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ABSTRACT

 Histamine and serotonin are important neurochemicals that maintain crucial brain 

functions. Both are thought to be altered in affective and neurodegenerative disorders such 

as depression and Parkinson’s disease. Histamine and serotonin are thought to modulate 

one another but the exact relationship remains unknown and this gap in knowledge makes 

diagnosing and treating disorders involving the transmitters difficult. The Hashemi lab 

studies serotonin neurochemistry to understand serotonin’s role in psychiatric disorders. 

However, histamine has remained an understudied neurotransmitter due to a lack of 

analytical tools. In 2015 and 2016, the Hashemi lab pioneered a novel detection method 

utilizing fast-scan cyclic voltammetry (FSCV) for the real-time detection of histamine and 

serotonin in vivo. Using this method, we are able to visualize the real-time modulation of 

serotonin by histamine through H3 receptors. The work herein furthers our understanding 

of the histaminergic system in the brain and its modulation of serotonin. First, we provided 

a review of analytical methods for monitoring neurotransmitters in the brain (Chapter 2). 

Then we pharmacologically challenged various aspects of the histaminergic systems of 

male and female mice and show the highly conserved nature of the brain (Chapter 3). This 

study also revealed that female mice may have a more tightly regulated brain histamine 

system controlled by cycling hormones. Next, we investigated the synaptic transport 

mechanisms of histamine and utilized a genetically modified mouse model to rule out the 

contribution of the serotonin transporter towards histamine clearance (Chapter 4). After we 

characterized the histamine system and its clearance mechanism, we applied histamine 
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FSCV to a chronic stress mouse model of depression (Chapter 5). We found brain 

histamine was elevated during chronic stress and inflammation; this has large implications 

given the comorbidity of psychiatric disorders and chronic inflammation. Finally, we 

investigated the effect of ketamine, the newly approved antidepressant and anti-

inflammatory compound, on histamine transmission and subsequent serotonin modulation 

(Chapter 6). Collectively, this dissertation furthers our understanding of histamine and 

serotonin modulation and the mechanisms governing their transmission. Novel discoveries 

will provide necessary the insight to develop more efficient and targeted therapies for brain 

disorders.
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CHAPTER 1 

INTRODUCTION

1.1 Brain Signaling via Chemical Transmission 

A major paradigm shift occurred in the late 1950s and 1960s when the 

understanding of brain communication shifted from electrical signaling to chemical 

signaling.1 The chemical messengers responsible for relaying signals from the brain to the 

periphery would come to be known as neurotransmitters. Histamine is a bioaminergic 

neurotransmitter responsible for myriad processes in both the peripheral and central 

nervous systems and is capable of modulating other chemicals in the body. One key 

neurotransmitter that histamine modulates is serotonin (5-hydroxytryptamine; 5-HT). The 

dysregulation of both histamine and serotonin have been implicated in psychiatric and 

neurodegenerative diseases like depression and Parkinson’s disease.2-5 Understanding the 

underlying chemical miscommunication is a critical component of diagnosing and 

accurately treating diseases of the brain and the absence of robust tools to do so hinders 

treatment advances. The Hashemi lab specializes in developing and using electrochemical 

tools to understand the unique neurochemistry of histamine and serotonin in vivo in 

rodents. Relative to the serotonergic system, the histaminergic system remains 

understudied in the context of psychiatric and neurodegenerative diseases, especially when 

studied simultaneously. The Hashemi lab optimized an electrochemical technique that 

allowed for simultaneous, real-time, in vivo detection of histamine and serotonin in rodent 

brains. This current work furthers our understanding of the CNS histaminergic system and 
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the implications in inflammatory states. The focus of this dissertation will be analyzing and 

understanding the modulatory effects of histamine on serotonin in healthy and 

inflammatory states using electroanalytical chemistry. This will be accomplished in several 

chapters: 1) Reviewing analysis methods for neurotransmitters; 2) Investigating 

differences between the male and female histaminergic system in the context of 

pharmaceutical challenges in mice; 3) Studying the transport mechanisms of histamine in 

the CNS; 4) Determining how histamine is altered in models of inflammation and 

neurodegeneration; and 5) Investigating how an atypical antidepressant affects 

histaminergic signaling. 

1.1.1 The Histaminergic System 

Histamine is a key bioamine neurotransmitter that has roles in circadian rhythm, 

arousal, appetite, and inflammation. 6-9 The enzyme L-histidine decarboxylase (HDC) is 

responsible for transforming histamine’s precursor molecule, the amino acid L-histidine, 

into histamine in the tuberomammillary nucleus (TMN) located in the hypothalamus.6-7 

Similar to other monoamine neurotransmitters (i.e. serotonin, dopamine, or 

norepinephrine), histamine is stored neuronally until its release, at which point it is 

packaged into vesicles via the vesicular monoamine transporter protein (VMAT).10-13 

Whereas serotonin, dopamine, and norepinephrine each have their own active, high-affinity 

transport mechanisms (serotonin transporter, SERT; dopamine transporter, DAT; 

norepinephrine transporter, NET), an analogous transport protein for histamine has not yet 

been identified.14-16 Brain histamine is thought to be exclusively degraded to tele-

methylhistamine by the intracellular histamine N-methyltransferase enzyme.17 It can then 

be further degraded into tele-methylimidazoleacetic acid via monoamine oxidase B and 
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aldehyde dehydrogenase.18-19 It is worth noting that this metabolic route is only available 

for central histamine; peripheral histamine undergoes its own specific degradation through 

diamine oxidase.14  

From the cell bodies in the TMN, histamine neurons project widely throughout the 

brain and spinal cord with the densest innervations ascending to the hypothalamus.20-21 

There have been four receptors identified associated with the histaminergic system: H1R, 

H2R, H3R, and H4R, all of which belong to the rhodopsin-like family of G protein-coupled 

receptors.6 Receptors H1, H2, and H3 are expressed in large amounts throughout the brain 

and while there is some recent evidence for H4R mRNA expression in neuronal cells and 

microglia, the science remains unsettled.6, 22-25 However, it is important that H4R are widely 

expressed in mast cells which can cross the blood brain barrier (BBB).26-27 

The H1 receptor is post-synaptically located and activation leads to neuronal 

excitation. Arousal and feeding behavior have been linked to H1R activation using 

knockout models to visualize behavioral deficits associated with H1 impairment.28-32 

Common over-the-counter antihistamines (diphenhydramine and loratadine; brand names 

Benadryl® and Claritin®, respectively) target this receptor to block H1 activation and 

signal propagation. H2R is expressed throughout the brain and localized post-synaptically 

similar to H1R, but is more consistently localized with HA projections.33-34 Particularly 

high expression is found in the amygdala and hippocampus where H2R deficient mice 

display cognitive impairments.35 Additionally, H2R targeted therapies are commonly 

prescribed for the alleviation of gastric disorders as H2R has been shown to mediate gastric 

secretion.36-37 The H3 receptor, identified in 198338 and cloned in 199939, is unique in its 

location and ability. It is located presynaptically on HA neurons and functions as an 
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inhibitory autoreceptor controlling the release and synthesis of histamine.40-41 H3R is also 

able to exert modulatory control over other neurotransmitter systems through locations on 

presynaptic terminals of serotonin42, dopamine43, norepinephrine44, glutamate45, GABA46, 

and acetylcholine.47 As such, the H3 receptor rapidly became a target for various 

therapeutic strategies.48-50 Animals lacking H3R show enhanced susceptibility to CNS 

inflammatory disease51 and behavior abnormalities.52 H4R are the most recently identified 

receptor subtype and subsequently the least understood as briefly discussed in the previous 

paragraph.53 The majority of H4R expression is confirmed in the periphernal nervous 

system in mast cells, basophils, and hematopoetic cells playing a critical role in the 

recruitment and activation of inflammatory cells.54-55 With similar function to H3R, H4R 

has also been highlighted for its therapeutic potential.56 

1.1.2 Histamine’s Role in Neurodegenerative and Psychiatric Diseases 

 Dysfunctions of the histaminergic system have been linked to physiological and 

behavioral abnormalities. In post-mortem analyses of patients diagnosed with Huntington’s 

disease, a significantly lower H3 receptor density was observed in areas of the dorsal 

striatum suggesting indirect impaired control of motor function neurons.57 Significant 

decreases in tuberomammillary neurons and H1 receptor binding are observed in 

Alzheimer’s disease patients.58-60 H1R knockout mice show pronounced impairment of 

spatial learning and memory and reduced neurogenesis.61 Decreased histamine throughout 

the CNS paired with blunted neurogenesis may partially explain the cognitive decline seen 

in AD patients. Parkinson’s disease (PD) patients have significantly higher histamine levels 

in the brain compared to age matched controls and show alterations in histamine receptor 

expression density.62-63 Similar results have been found in a rodent model of PD.64-65 
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Growing evidence highlights histamine’s role in psychiatric disorders like depression and 

anxiety. Histamine receptor binding was significantly less in patients with major depressive 

disorder compared to age-matched controls via positron emission tomography.66 Recently, 

an HDC knockout mouse revealed that chronic histamine depletion induced depression-

like phenotypes and impaired memory analyzed by the tail suspension, elevated zero maze, 

and Y-maze tests.67 

1.1.3 Histamine’s Role in Inflammation 

 Histamine is most well-known for its role in the immune system and inflammatory 

state. It is a critical signaling molecule that recruits pro-inflammatory proteins and markers 

to the site of a foreign body response.68 The foreign body response can range from 

something as common as the immune reaction to a splinter to oxidative stress in 

Parkinson’s disease. These examples highlight two distinct locations, the splinter in the 

peripheral nervous system – systemic inflammation – and oxidative stress – 

neuroinflammation. Systemic inflammation is marked by upregulation of microglia, 

recruitment of proinflammatory cytokines and a local increase in histamine levels.69 While 

neuroinflammation produces similar chemical markers, the effect on local levels of 

histamine remains unclear for several reasons. First, the brain is a unique, dynamic medium 

that is analytically challenging to probe. Secondly, histamine is present in the brain at 

extremely low concentrations (nM-µM), therefore, techniques must possess the selectivity 

and sensitivity to capture these low concentrations. Third, histamine, itself, presents a 

distinct fundamental challenge to overcome due to ‘the observer effect’ – meaning, to 

measure histamine a probe must be inserted into the area of interest (eg. brain). This action 

inevitably causes a disruption of tissue and cellular communication and registers a foreign 
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body response. The inflammation resulting from probe insertion causes an inherent 

perturbation in histamine levels in the surrounding tissue that can result in techniques 

reporting varying concentrations of histamine. 

1.1.4 Sex Mediated Differences in the Histaminergic System 

 In 2015 the National Institutes of Health (NIH) ruled that all NIH funded research 

involving pre-clinical animal models must consider sex as a biological variable.70 

Previously, the majority of pre-clinical research was conducted using only the male sex to 

avoid complications from the female estrous cycle.71 This has led to several instances of 

untranslatable research between animal models and humans.72 Estrogen is shown to be a 

major regulator of eating behavior, lordosis, and anxiety through estrogen receptor alpha 

and beta (ER; ER) in the ventromedial nucleus (VMN) of the hypothalamus.73-75 In the 

VMN, H1R and ERα mRNA are co-expressed in histaminergic neurons.73, 76 ER is not as 

strongly expressed in the VMN as ER but is expressed in the TMN where histaminergic 

projections originate.77 The localization of estrogen receptors on histamine projections 

highlights the potential role estrogen plays in regulating immune response. Indeed, 

estrogen and progesterone have been shown to mitigate the acute inflammatory response 

to lipopolysaccharide exposure.78-81 Additionally, inflammatory diseases and the 

susceptibility to the occurrence of diseases are more likely in post-menopausal women than 

pre-menopausal women and age matched males.82-83 

1.1.5 Classical Versus Atypical Antidepressants 

 Since the discovery that the main therapeutic effects of early antidepressants were 

due to targeting the monoaminergic systems of dopamine, norepinephrine and serotonin, 

the field has remained focused on optimizing strategies to increase levels of these in the 
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brain.84 Broadly, these monoamine targeting antidepressants are grouped into ‘classical’ 

antidepressants adhering to the monoamine hypothesis, but research drive for these classic 

antidepressants has steadily weaned.85-86 At the turn of the century a revised monoamine 

hypothesis was being constructed that brought the glutamatergic system to the forefront.87 

The modulatory roles that glutamate and GABA play on the monoamines is being explored 

as a new potential therapeutic route for antidepressants.88 Ketamine, an NMDA receptor 

antagonist, became a molecule of interest for its rapid acting antidepressant activity when 

administered in subanesthetic doses.89 The exact mechanism(s) of the new rapid acting 

antidepressants are still unknown and its clear they involve several complicated 

biochemical pathways.90-95 As an antidepressant and anti-inflammatory, we are interested 

in understanding ketamine’s effects on central histamine. 

1.1.6 Motivation for this Dissertation 

 Given the information above, exploring the fundamental neurochemical actions of 

histamine within the brain presented a unique and challenging opportunity. The Hashemi 

lab is deeply focused on the chemical underpinnings of psychiatric diseases, specifically 

depression, and the nexus of histamine and serotonin holds the potential of being a rich 

body of information. Therefore, my work herein, focuses on furthering the community’s 

understanding of the relationship between the histaminergic and serotonergic systems and 

their co-modulation. As mentioned above, measuring chemicals in the brain is a great 

challenge; requiring technical ability in addition to niche tools that fulfill strict criteria. An 

ideal method must have the selectivity to discern between structurally and chemically 

similar neurotransmitters and metabolites, high sensitivity to monitor the low extra-

synaptic analyte concentrations, a high temporal resolution to capture the sub-second 
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neurotransmission process, and the micro- dimensions to target specific brain regions of 

interest while causing minimal disruption to the surrounding tissue in vivo. Electrochemical 

methods utilizing carbon electrodes are promising for such a challenging task. 

1.2 Analysis of Neurotransmitters in the Brain 

 The brain is a dynamic medium in a delicate homeostasis. As stated above, 

monitoring the chemicals present in the brain necessitates selectivity, sensitivity, temporal, 

and size requirements. Detection and quantification methods can be delineated into two 

main categories: microdialysis (followed by separation and detection) and direct 

electrochemical analysis, each with their respective benefits and drawbacks. For the 

purposes of this dissertation, only electrochemical methods will be discussed.  

Electroanalytical methods are favorable for neurochemical analyses due to the 

ability to quantify species through direct oxidation and reduction. Carbon electrodes have 

proven to be the most commonly used implantable electrochemical probe due to its relative 

inertness, abundance, cost efficiency, wide potential window, and rich surface chemistry.96-

97 Specifically, carbon fiber microelectrodes (CFMs) are extensively used in the field of 

monitoring neurotransmitters as they are biocompatible, stable, minimally invasive, and 

have favorable electrochemical properties.98 The CFM surface is an electrochemically rich 

environment covered in striations and electrostatically charged oxygen functionalities (-

OH, C=O, COOH/COO-) that result in an adsorptive substrate.99 Thus, the CFM is a go-to 

tool for direct electrochemical analysis of neurotransmitters in vivo. 

1.2.1 Electrochemical Methods Utilizing CFMs 

CFMs are covered in striations that create a rich surface for electrochemical 

activity. The obvious drawback of electroanalytical methods is the key criterion that an 
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analyte of interest must be readily oxidizable in the given potential window of the electrode 

material. Several key bioamines in the brain, dopamine, serotonin, and histamine, are in 

fact oxidizable within the potential window for carbon. In the 1960s, Ralph Adams 

conducted his seminal work using crudely fabricated carbon paste disc electrodes 

constructed from graphite powder mixed with mineral oil packed into Teflon tubing.100 

These electrodes were used to carry out foundational electrochemical analyses of 

catecholamines.101-102 

 

Figure 1.1: A scanning electron micrograph of 

a carbon fiber microelectrode. 

 

 Amperometry involves holding an electrode at a constant potential while measuring 

the current from analytes undergoing oxidization at the surface. This method excels at 

temporal resolution (< 1 ms) as oxidation is only limited by diffusion to the electrode 

surface since potential is constant.103 Unfortunately, holding at a specific voltage oxidizes 

all analytes with oxidation potentials under that voltage and, thus, amperometry suffers 

from a lack of chemical specificity which is critical when probing the brain. Amperometry 

at carbon disks, fibers, and microelectrode arrays has been used extensively to study the 

vesicular events of single cells ex vivo.104-105 These studies aim to further the understanding 
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of neurotransmission by studying vesicle fusion pore size, duration, and the amount of 

contents release during an event.106-107 

 Chronoamperometry was developed to increase the selectivity afforded by 

amperometry. Chronoamperometry uses a square wave step function between an upper and 

lower potential limit. The ratio of peak oxidative current to peak reductive current is able 

to yield information about the analyte identity. There is a large capacitive (non-faradiac) 

current associated with potential pulse that decays rapidly, while the faradiac current 

decays more slowly over time. Analyte information is obtained through the relationship of 

redox current over time. This technique has been used to study psychiatric models108, 

transport kinetics109-110, and drugs of abuse.111 Despite its improvements over 

amperometry, chronoamperometry is still limited in scope and selectivity. 

1.2.2 Fast-Scan Cyclic Voltammetry 

 Pioneered by R. Mark Wightman and Julian Millar in the mid 1980s, fast-scan 

cyclic voltammetry (FSCV) (originally termed fast cyclic voltammetry) emerged as a new, 

selective method to monitor the release and reuptake of dopamine in vivo by direct 

electrochemical means at CFMs.112-113 FSCV has become a primary technique used by 

electrochemists, neuroscientists, and pharmacologists to monitor neurochemicals in the 

brain. As in traditional cyclic voltammetry, FSCV uses the combination of 2 or more linear 

voltammetric sweeps (eg. A → B → A) while measuring the current from redox processes 

occurring at the working electrode. This set of instructions that dictates how the potential 

of the working electrode is changed with respect to time is called a waveform and is the 

primary source of selectivity. FSCV employs significantly faster scan rates (100s – 1000s 

V s-1) than traditional cyclic voltammetry (typically <100 mV s-1) that result in a large 
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capacitive current. This necessitates background subtraction to remove it. Therefore, FSCV 

is only capable of recording changes in a system and reports data as a change from baseline. 

In vivo, this change is typically induced through electrical, pharmacological, or optical 

stimulation of neurotransmitter release.114-116 

An FSCV data set is collected on a sub-second timescale. The fast scan rate results 

in the potential window being traversed in <10 ms, and the application frequency of 10 Hz 

allows for analytes to preconcentrate on the electrode surface at the holding potential for 

>90 ms, thereby increasing sensitivity. Scanning from the resting potential to the positive 

limit is called the anodic scan, where oxidation of the analyte will occur. Once the limit is 

reached, the scan direction is switched, and the cathodic scan begins, during which 

reduction occurs, until the negative limit is reached. The rapid switch in scan direction 

results in the aforementioned large capacitive current due a phenomenon known as the 

electrical double layer.117-118 Data obtained through a complete scan of the waveform is 

plotted as current vs voltage to create an analyte-specific cyclic voltammogram (CV) used 

for both qualitative and quantitative analysis. FSCV software collects the CVs and stacks 

them in chronological order to construct a 3D plot of current vs voltage vs time. For ease 

of interpretation, 3D plots are visualized from a bird’s-eye view, termed color plots, where 

current is assigned a false color as seen in Figure 1.2A. Importantly, a vertical line through 

the color plot provides the CV and a horizontal line will detail how current is changing 

over time. 

It was only recently that FSCV was expanded for the analysis of neurochemicals 

other than dopamine in vivo. Serotonin detection via FSCV is very difficult due to low 

extracellular concentrations and the metabolite, 5-hydroxyindoleacetic acid, is present at 
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much higher concentrations and fouls the electrode surface.119 To overcome the surface 

fouling, a thin layer of Nafion, a cation exchange polymer, is electrodeposited onto the 

CFM.119 

 

Figure 1.2: Serotonin FSCV(A) Representative serotonin color plot with a 

characteristic serotonin CV inset. The green event corresponds to serotonin 

oxidation occurring around 0.7 V. Abstracting the vertical dashed line will 

reconstitute the inset CV. (B) Concentration vs time profile for the stimulated 

release and reuptake of serotonin. B is obtained by following the horizontal 

dashed line in A. The light blue bar at the bottom represents the 2 s electrical 

stimulation. 

 

We measure serotonin dynamics in the CA2 region of the hippocampus by 

stimulating a dense tract of nerves that innervate numerous brain regions called the medial 

forebrain bundle (MFB). Figure 1.2 shows a typical data set obtained for the stimulated 

release of serotonin in the CA2. Figure 1.2A is a representative serotonin color plot with 

an inset CV in the right corner. Interpretation of the color plot is described in detail 

elsewhere.120 Briefly, time is on the x-axis, voltage is on the y-axis, and current is 

represented in false color. The green event corresponds to the oxidation of serotonin around 

0.7 V. Figure 1.2B shows a typical profile of stimulated serotonin release and reuptake 

over time as [5-HT] vs time. Background is collected for 5 s followed by a 2 s stimulation, 

denoted by the light blue bar, resulting in the release of serotonin which reaches a 
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maximum amplitude around 7.5 s where the rate of reuptake now overtakes the rate of 

release following the end of the stimulation and the curve decays to baseline as serotonin 

is reuptaken into the cells. 

In 2015, the Hashemi lab expanded the scope of FSCV once again by pioneering a 

novel, selective waveform for the detection of histamine in vivo that scans from -0.5 V to 

-0.7 V to 1.1 V to -0.5 V at 600 V s-1.121 This method is not only able to detect histamine 

but also serotonin simultaneously due to the potential window encompassing both 

neurotransmitters’ oxidation potentials.122 Using this technique, we showed that the 

stimulated release of histamine results in the rapid inhibition of serotonin release in the 

posterior hypothalamus of mice.122 Shown in Figure 1.3A is a representative color plot of 

the stimulated histamine release and subsequent serotonin inhibition. The green event 

corresponds to the release and reuptake of histamine and the blue/black event corresponds 

to the inhibition of serotonin. What is important to reiterate here is that FSCV is 

background subtracted and therefore only captures changes. The serotonin event is shown 

in blue, or negative current, which is only denoting that serotonin is decreasing with respect 

to its pre-stimulation levels. It is still occurring around 0.7 V, which is serotonin’s oxidation 

potential for FSCV. The stimulated release of histamine is shown in green because it is 

increasing with respect to its ambient concentration. Histamine FSCV uses a stimulation 

of the MFB to elicit the release of neurotransmitters, albeit a different placement along the 

tract to minimize serotonin release. Figure 1.3B shows the corresponding concentration vs 

time plots for both histamine and serotonin together to better visualize the release-

inhibition relationship. Following stimulation (light blue bar) [histamine] increases (blue; 

top trace) and returns to baseline while the inhibition of [serotonin] (red; bottom trace) can 
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be seen as it reaches peak inhibition slightly after histamine’s peak release and returns to 

around 20 nM. Figure 1.3C is a representative CV collected for histamine FSCV. It is 

visually very different than a serotonin CV and difficult to interpret. The broad peak around 

0.2-0.3 V represents HA oxidation and the inverted peak around 0.7-0.8 V represents the 

serotonin oxidation (the oxidation peak is inverted due to serotonin levels decreasing with 

respect to ambient levels). 

 

Figure 1.3: Histamine fast-scan cyclic voltammetry in the mouse 

posterior hypothalamus. (A) Representative histamine FSCV color plot. 

The green event is stimulated histamine release (labeled ‘histamine’) and 

the blue even is the subsequent inhibited serotonin (labeled ‘serotonin’). 

(B) Release and inhibition vs time profiles of histamine (blue) and 

serotonin (red), respectively. Stimulation is shown as the light blue bar. 

(C) Characteristic histamine CV. Blue star shows the typical histamine 

peak around 0.3 V and red star shows the inverted serotonin oxidation 

peak around 0.7-0.8V. (D) Histamine FSCV waveform. 

 

The development of this novel waveform that enables the monitoring of two 

neurotransmitter systems simultaneously provides a tool to obtain critical information 
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about the modulatory relationship between histamine and serotonin and widens the scope 

of questions we are able to ask about the brain. 

1.3 Scope of the Dissertation 

 In this dissertation, I first provide a review of analysis methods for neurochemicals 

in the brain (Chapter 2). I then use histamine FSCV to characterize the male and female 

histaminergic system and their respective response to pharmaceutical challenge via 

voltammetry (Chapter 3). I then further investigated the reuptake mechanisms of histamine 

in male and female mice through use of a genetic mouse model (Chapter 4). After gaining 

an understanding of the functionality of the histaminergic system, I apply histamine FSCV 

to a model of chronic inflammation: behaviorally depressed mice (Chapter 5). Finally, I 

used histamine FSCV to understand the effects of a new ‘atypical’ antidepressant on the 

modulation of histamine and serotonin (Chapter 6). An outline of this dissertation is 

described below: 

Chapter 1: Introduction 

Chapter 2: Review of methods for neurochemical analysis in the brain.  

Chapter 3: This chapter describes the voltammetric investigation of the histaminergic 

system. I pharmacologically challenged receptors, synthesis, packaging, and metabolism 

of histamine to determine how synaptic histamine responds in male and female mice. 

Additionally, I investigated histamine release throughout the estrous cycle of female mice 

and sexual differences in H3R targeting drugs.  

Chapter 4: This chapter builds upon previous work that investigated the transport 

mechanisms of histamine. We determined SERT, NET, and OCT may all play a role in 



www.manaraa.com

 

16 

histamine uptake. I used a genetically altered mouse model (Met172) with a SERT that is 

insensitive to certain SSRIs to rule out SERT’s contribution to histamine uptake. 

Chapter 5: This chapter covers the application of histamine FSCV to an animal model of 

inflammation. I analyzed the evocable histamine levels in behaviorally depressed mice 

(chronic mild stress paradigm) and compared that to age matched controls. 

Chapter 6: This chapter describes the response of histamine and its modulation of 

serotonin in response to a new ‘atypical’ antidepressant, ketamine. Ketamine doesn’t 

directly target the monoaminergic systems like traditional antidepressants (eg. SSRIs). I 

found that ketamine caused a rapid and sustained inhibition of stimulated histamine release 

and greatly alleviates the inhibition of serotonin levels in the posterior hypothalamus. 

Chapter 7: The final chapter summarizes the conclusions of my work and highlights future 

directions of research for histamine FSCV.
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CHAPTER 2 

BRAIN CHEMISTRY | NEUROTRANSMITTERS1

 
1 Berger, S.N.; Hashemi, P. (2019). Brain Chemistry | Neurotransmitters. In Worsfold, P., 

Poole, C., Townshend, A., Miró, M. (Eds.), Encyclopedia of Analytical Science, (3rd ed.). 

vol. 1, pp 316-331, Elsevier. 

Reprinted with permission from Elsevier. 
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2.0 Abstract 

 This chapter focuses on analytical detection methods for measuring 

neurotransmitters in vivo. The discussion begins by outlining the challenges of in vivo 

neurotransmitter analysis. Then, microdialysis, an in vivo sampling method, is critically 

described. Subsequently, three methods of direct detection of neurotransmitters are 

presented in terms of their advantages and disadvantages. Finally, future directions of 

monitoring brain chemistry are prospectively explored. 

2.1 Introduction 

Neurotransmission is the essential mechanism via which brain cells communicate. 

This process is fundamental to all aspects of brain function. Briefly, biochemical impulses 

arrive at the initiating, or presynaptic, cell that cause neurotransmitter-filled vesicles to fuse 

with the cell’s membrane. The neurotransmitter contents of these vesicles are then expelled 

into the small gap preceding the receiving or postsynaptic cell, called the synapse. The 

neurotransmitter then interacts with a postsynaptic protein (receptor), relaying the 

biochemical message from the presynaptic cell via initiation of a signaling cascade. The 

neurotransmitter is subsequently inactivated in the synapse either through reuptake back 

into the presynaptic cell via transporter proteins and/or enzymatic catabolism directly in 

the synapse. This process is fast (sub-second), the levels of transmitters are low in the 

extracellular space (nanomolar) and the synaptic space is tight (nanometers). Taken 

together, these characteristics immediately render an investigation of neurotransmission a 

difficult analytical challenge. 

Meaningful analytical measurements of neurotransmitters are highly significant, 

since there is a clear gap in the understanding of the chemical underpinnings of brain 
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pathophysiology. This shortcoming makes it almost impossible to accurately diagnose and 

treat disorders of the brain. A clearer definition of the roles of neurotransmitters in health 

and disease would greatly enhance the ability to improve diagnostic and therapeutic 

approaches to the brain. 

Analytical chemists have developed a suite of tools for analysis of the low 

concentration of neurotransmitters within the dynamic and harsh environment of the brain. 

Each method possesses inherent advantages and shortcomings. This module represents an 

overview of cutting-edge analytical approaches for neurotransmitters. The discussion 

begins with an outline of the analytical challenges for monitoring neurotransmitters. Two 

major classes of analytical methods, microdialysis, an in vivo sampling technique, and 

direct detection at microelectrodes, are highlighted in the context of their pros and cons. 

While the majority of work cited focuses on in vivo analysis, we chose to include work on 

single cell exocytosis. We believe there is much value in understanding fundamental 

mechanisms of neurotransmitter function via these single cell models. Cutting-edge 

advances in development or applications of these methods are showcased. Finally, the 

future of neuro-analytical chemistry is prospectively discussed. 

2.2 Analytical Challenges for Measuring Neurotransmitters 

Neurotransmission occurs as a function of many simultaneous processes that 

control extracellular neurotransmitter levels. To characterize the chemistry of 

neurotransmission, ideally two types of measurements are necessary. First, is the ambient 

extracellular neurotransmitter concentrations that depict the system at rest. Second, is the 

much faster, neurotransmitter release and reuptake events that define receptor, transporter 
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and catabolic activity. In the proceeding text we refer to these measurements as slow and 

fast measurements. 

While slow and fast chemical measurements of neurotransmitters are the targets of 

analysis, there are several, chemical and non-chemical, criteria that need to be addressed 

for successful neuro-analytical measurements. These criteria are discussed below. 

2.2.1 Biocompatibility 

Chemical measurements, for the most part, involve direct implantation of a probe 

into the tissue. Implantation of foreign objects into the brain cause rapid and severe immune 

responses that serve to isolate the object from surrounding tissue.1-2 This renders 

electrochemical measurements during immune attack very challenging.  

Metal substrates, such as Ag and Pt, are excellent laboratory probes because they 

are inert. However, these materials are not ideal for implantation into the brain because of 

a robust immune response arising primarily because Ag or Pt are not readily found in 

mammalian bodies.3-4 

One strategy being explored to alleviate the immune response occurring from 

implantation is the controlled release of therapeutic compounds through polymer coatings. 

For example, the Schoenfisch lab at the University of North Carolina has been developing 

methods to control the release of nitric oxide, an immune mediator, from polyurethane 

coated glucose biosensors.5-7 Another approach is to utilize a fundamentally biocompatible 

material, which the body does not immediately perceive as foreign. A good example of this 

is carbon. Carbon has been shown to be biocompatible and maintain its measurement 

capabilities over days to weeks.8 This material has been fashioned into innumerable forms, 

the most popular of which in neuroanalysis are carbon fiber electrodes.9-10 Furthermore, 
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carbon electrode surfaces can easily be manipulated with polymer coatings or structural 

moieties (e.g. carbon nanotubes and nanotube yarns) to increase selectivity to a specific 

analyte.11-15 

2.2.2 Invasiveness 

Damage created by insertion of a probe is a profound consideration. The distance 

through which neurotransmitters relay their biochemical messages are 10s of nanometers, 

thus, the measuring probe must retain its dimensions as small as possible. 

Capillaries are responsible for blood transport throughout the brain and create the 

blood-brain barrier via their connection with astrocytes. If the blood-brain barrier is 

compromised, brain homeostasis can be severely disrupted. The intercapillary distance 

dictates the size of probe that can be introduced into brain tissue without rupturing the 

blood-brain barrier. This distance varies between brain regions in rodents but does not 

exceed ~30 m.16-17 Intercapillary diameter is inextricably linked with the biocompatibility 

of a probe, as any material large enough to compromise the blood-brain barrier will induce 

an immune response. Therefore, microelectrodes with one dimension under ~30 m show 

the most promising outlook to qualify as minimally invasive. When met, the criteria of 

biocompatibility and minimal invasiveness allow for probes to remain in tissue for weeks 

or months without evidence of gliosis.8 Currently, sample methods are not typically able 

to employ < 30 m probes but the miniaturization of standard techniques like microdialysis 

is actively being pursued. One of the limiting factors in the size of microdialysis probes is 

the sample membranes are prefabricated. Decreasing probe size is limited by perfusate 

channels and reasonable flow rate. Microfabricated silicon microdialysis probes have been 

created with 70 µm x 85 µm and 45 µm x 180 µm thick sampling areas.18-19 While 
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microdialysis is limited in its size, the technique is widely applicable and recently a method 

has been developed to alleviate the inevitable penetration injury response. Retrodialysis 

with an anti-inflammatory compound, dexamethasone, has been shown to drastically 

reduce symptoms of probe damage.20 

2.2.3 Temporal Resolution 

To study slow vs. fast changes fundamentally different time scales are required. 

Slower shifts in ambient neurotransmitter levels can be captured with measurements every 

minute to 10s of minutes. However, the fast changes that correspond to transmission 

necessitate sub-second temporal resolution analysis. Of the methods surveyed below, 

microdialysis serves to provide information about slower ambient level shifts while fast 

voltammetric methods indicate the sub-second neurochemistry of the analyte. In recent 

years, however, fast voltammetric methods have been modified to provide ambient level 

information.21-23 

For exocytosis analysis, amperometric methods at single cells provide microsecond 

temporal resolution that resolves mechanistic information about exocytotic events.24-27 

2.2.4 Sensitivity and Selectivity 

Chemical messengers in the brain are present at very low concentrations, typically 

in the nanomolar to low micromolar range.21, 23, 28-29 Additionally, there are many 

structurally and chemically similar analytes (precursors and metabolites). Thus, a high 

degree of sensitivity and selectivity (i.e. the ability to discern between analytes) is 

necessary for neurotransmitter analysis. For sampling methods such as microdialysis these 

criteria are less of a challenge since the ability to prepare the sample ex-vivo provides many 

opportunities to improve sensitivity and selectivity. With direct analysis, however, it is 
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much more challenging to acquire both a high level of sensitivity and selectivity. Thus, 

most direct analysis is limited to one, at most, two analytes.12, 30-33 

2.3 Neurochemical Analysis Methods 

For the purposes of this section, we chose to breakdown neurotransmitter analysis 

into two main factions: 1) A technique based on sampling, followed by detection, namely 

microdialysis and 2) direct detection at microelectrodes. 

2.3.1 Microdialysis 

Microdialysis utilizes a probe that is implanted into brain tissue. This is a sampling 

method that uses a semi-permeable membrane to allow the selective diffusion of analytes 

into a collection stream, the dialysate. Microdialysis sampling can be used to study the 

effects of pharmacological agents on various endogenous systems or metabolism of the 

agents themselves. The method can also be utilized for delivery of pharmaceutical agents. 

Following sample collection, the dialysate is coupled to a secondary analysis system such 

as liquid chromatography - mass spectrometry34-37 or biosensors.38-40 A key advantage of 

microdialysis is its ability to monitor multiple analytes. 

2.3.1.1 Microdialysis Probes; Mitigating Tissue Damage and Immune Response 

Microdialysis probes are typically between 200 and 300 m in diameter, because 

recovery rate is directly proportional to porosity and surface area.18, 41-44 These dimensions 

cause significant damage to brain tissue.2, 45 This damage creates two primary issues; first, 

emanating from the probe is a concentric gradient of damaged cells extending around 250 

m46 and sampling from this compromised tissue confounds data.47 Secondly, 

microdialysis sampling devices greatly exceed the intercapillary distance in rodent brains 

(~30 µm). This means that when implanted into brain tissue, these probes damage blood 
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vessels, compromise the blood-brain barrier and induce a rapid inflammatory response. As 

such, profound gliosis has been observed around the microdialysis implantation site which 

reduces probe stability over time and impedes analyte diffusion into the dialysate stream.20, 

48-49 

To improve the integrity and longevity of microdialysis measurements, researchers 

have sought to a) mitigate the initial penetration damage via probe miniaturization and b) 

lessen the brain’s immune response to probe implantation. We briefly discuss these two 

strategies below: 

a) A good approach for reducing tissue damage caused by the microdialysis probe 

is to decrease the overall size. A significant dimension is the intercapillary 

diameter of ~30 µm in the mouse brain (vide supra). To this end, Kennedy and 

colleagues are miniaturizing microdialysis probes. For example, a silicon 

microdialysis probe (45 µm x 180 µm) was microfabricated with a nanoporous 

membrane embedded onto the probe that functions as the sampling 

membrane.18-19 A key disadvantage of probe miniaturization is the loss of 

recovery. At flow rates of 100 nL/min, Lee et al. only observed 2-21% recovery 

rates with the microfabricated silicon probe, which has been attributed to pore 

blockage.18 

b) To reduce the brain’s immune reaction to implanted probes, Michael and 

colleagues have shown that retrodialysis of an anti-inflammatory 

glucocorticoid, dexamethasone, greatly reduces glial scarring typically seen at 

microdialysis probe tracks.50-51 Without dexamethasone treatment, electrically 

evoked dopamine release was not observable in tissue ~100 m from probe 
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implantation nor at the dialysate outflow within 4 hours of implantation. 

However, following dexamethasone retrodialysis, dopamine release was 

restored in surrounding tissue and in the dialysate. Additionally, 

immunohistochemistry confirmed that dopamine transporters surrounding the 

probe track were preserved after dexamethasone treatment.51 Furthermore, 

beneficial effects were observed for up to 5 days after cessation of 

dexamethasone perfusion.49 

2.3.1.2 Improving the Temporal Resolution of Microdialysis 

Perfusion rates through the microdialysis probe must be slow enough (typically 1-

2 L min-1) to allow analytes to reach equilibrium with the solution inside the probe, 

facilitating sufficient recovery. This slow perfusion rate is one of the factors limiting the 

temporal resolution of microdialysis experiments to slower, ambient level changes, on the 

order of 10s of minutes.46, 52 Increasing the perfusion rate would provide better temporal 

resolution, however this strategy is a trade off with sensitivity since a faster rate of 

perfusion would mean less time for analyte diffusion into the probe. Innovative solutions 

to this tradeoff are discussed below. 

2.3.1.2.1 Liquid Chromatography Coupled to Electrochemical Detection 

Ngo et al. reported in vivo monitoring of striatal dopamine in awake-behaving rats 

with under one-minute resolution via on-line liquid chromatography coupled to 

electrochemical detection. To achieve this sub-minute analysis, a previous separation53 was 

modified by using an 8-port, 2-loop separation setup, increasing the sample volume from 

500 nL to 600 nL and decreasing HPLC flow rate from 9.0 L min-1 to 7.5 L min-1. This 

higher temporal resolution allowed a detailed view of the dopaminergic response to 
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pharmacological manipulation.47 In a similar progression of experiments, serotonin was 

measured at 1-3 minute time resolution.52, 54-56 

2.3.1.2.2 Microchip Electrophoresis 

An alternative method to rapidly analyze microdialysis samples is microchip 

electrophoresis.57-60 Microchip electrophoresis uses nL sample volumes and an applied 

electrical potential to separate analytes in dialysate that travels a series of conduits etched 

into a silicon-based wafer. Due to the small volume used and fast separation technique, 

microchip electrophoresis limits the band broadening of sample plugs.61 This approach has 

pushed the temporal resolution of microdialysis sampling to under 60 s62-63, reaching < 15 

s.64-67 In 2008, Wang et al. reported a microfluidic device that preserved sampling 

resolution via segmentation of the dialysate flow into nL droplets by introducing an 

immiscible oil.68 The oil partitioned the sample stream into discrete pockets that minimized 

band broadening while allowing for <15 s temporal resolution. Recently, segmented flow 

has been applied to measurements of acetylcholine69 and glutamine, glutamate and gamma-

aminobutyric acid, simultaneously via nano-electrospray ionization mass spectrometry 

with 6 second time resolution at 100 nL min-1.70 

2.3.1.2.3 Enzyme Biosensing 

Microdialysis has also been coupled to enzyme biosensing for rapid (30 s) analysis. 

An on-line rapid sampling microdialysis method was developed and applied to clinical 

microdialysate to visualize biochemical changes during patient surgery.40, 71 In 2018, the 

resolution of clinical dialysate that had been collected off-line was compared to on-line 

dialysate. Samples stored at -80°C for up to 72 days showed good time alignment with 
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samples collected on-line.38 A schematic of sampling from the brain to analysis by the 

biosensors is shown in Fig. 1 below. 

 

Figure 2.1: Continuous online microdialysis analysis system for bedside 

monitoring using microfluidic chips containing biosensors for glucose and 

lactate and a potassium ion selective electrode. (a) shows the overall setup. (b) 

Raw traces from glucose (red), potassium (purple) and lactate (green) during a 

computer-controlled three-point automatic calibration run. Concentrations 

indicated by legend. (c) Sequential analysis of sensor performance over 12 h 
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using automatic calibration. (d) Raw data for microdialysate brain lactate 

levels collected at the bedside with three automatic calibrations. The green 

boxes indicate sections of clinical data and the grey boxes indicate calibrations. 

Clinical data were collected from patient 2. Reproduced from Rogers, ML. et 

al. J. Cereb. Blood Flow Metab. 2017, 37 (5), 1883-1895. 

 

A method utilizing microdialysis sampling with on-line electrochemical detection 

for acetylcholine monitoring was reported by Lin et al. in 2015.39 Dialysate flowed through 

a bioreactor with choline oxidase and prussian blue immobilized onto iron nanoparticles. 

The enzyme-catalase pair removed choline (and subsequent peroxide) present in the 

dialysate thus ensuring accurate quantification of acetylcholine at the detector. 

2.3.2 Direct Detection of Neurotransmitters 

In the following section we outline three methods of direct neurotransmitter 

analysis: enzyme biosensors, amperometry, and fast-scan cyclic voltammetry (FSCV). The 

biosensor and FSCV studies included here measure in vivo neurotransmitter concentrations 

while the amperometry studies investigate exocytosis at single cells ex vivo. 

2.3.2.1 Biosensors 

Biosensors play a powerful role in the toolbox of neuro-analytical methods as they 

are capable of monitoring traditionally non-electroactive molecules. Biosensors are 

chemical detection platforms that produce a quantifiable signal proportional to a specific 

analyte following an enzymatic reaction at a sensor surface. 

The majority of biosensors designed for neurotransmitter analysis rely on oxidation 

of enzymatically generated hydrogen peroxide as a direct proxy of analyte concentration.72-

74 Inclusion of a size exclusion polymer is necessary to isolate the electrode surface from 

interferences while still allowing hydrogen peroxide diffusion. Two commonly used 

polymers are a Nafion-polypyrrole combination or 1,3-phenylenediamine.72-74 
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Microfabrication of biosensors produces microarray electrodes composed of multiple 

individual sensing sites on one ceramic substrate. A microarray of four electrodes can be 

isolated to create two enzyme sensors and two in situ control sensors.75 

There have been many biosensors created for a myriad of substrates since their 

introduction in the late 1960s76-79 Neurotransmitter biosensors utilize enzymes that are 

responsible for the endogenous break down of the analyte, i.e. glutamate oxidase for the 

metabolism of glutamate. These sensors often exhibit promising results in vitro but in vivo 

applications of biosensors in the brain are severely limited.1, 80-81 The two primary 

challenges for in vivo biosensing are a) biosensors are large (typically >300 µm) relative 

to brain tissue (see above for issues with large probes and neurotransmitter measurements) 

b) biosensors rely on immobilized enzymes which have poor stability. We next discuss 

these issues briefly. 

Biosensors are typically hundreds of microns in 2 or all 3 dimensions.82-85 

Furthermore, metals like platinum (Pt) often serve as the electrode platform. Both the large 

dimensions and presence of metals like Pt serve to trigger inflammation and gliosis around 

the implantation site, that creates analysis limitations as described above.86 This foreign 

body reaction dramatically reduces device stability. Two strategies are being explored to 

decrease the probe size and reduce local inflammation. First, the Sombers lab at NC State 

has been pioneering the immobilization of glucose oxidase onto carbon fiber 

microelectrodes for successful in vivo glucose measurements.87 The probe that is utilized 

has a substantially smaller footprint than traditional biosensors at 25 m diameter and 100 

m length. These probes were further optimized to simultaneously detect glucose and 

dopamine.88 Second, the Schoenfisch lab at UNC are on the forefront of increasing the 
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longevity of in vivo placement of biosensors by applying nitric oxide releasing polymers. 

There are analytical challenges associated with nitric oxide loading into polymers, 

undesired leaching over time and controlling the release parameters of the polyurethane 

coating.7, 89 Despite current working challenges, this technique has shown promising results 

in swine in vivo implantation for several days.5-6 

Enzymes have a small window of efficiency in which they best function. Enzyme 

activity drops off exponentially when the it is not in conditions that mimic the enzyme’s 

ambient environment (e.g. temperature and pH). This means pre- and post-

calibrations/preparations likely denature enzymes and reduce probe activity. Moreover, 

enzyme loading on the electrode is a balancing act; a high load is necessary for adequate 

response. However, this comes at the expense of production of high concentrations of 

metabolic products of analysis (e.g. hydrogen peroxide) that inhibit and/or denature the 

enzyme. Ongoing work is to optimize this balance.90-92 

2.3.2.1.1 In Vivo Measurements 

As stated above, direct in vivo analysis with biosensors is limited. In the past five 

years there are a handful of studies that have been successful in vivo. Measurements of 

glutamate are common. In the rat cortex, studies have been carried out using a platinum 

electrode array to reveal acetylcholine and kynurenic acid’s dependence on glutamate 

release.73, 93 A new glutamate sensor that benefits from sensing platforms on each side of 

the ceramic substrate was reported for investigating distinct areas of the brain 

simultaneously.94 Glutamate release has also been monitored in the nucleus accumbens and 

ventral tegmental are in rats using a commercially available glutamate oxidase coated Pt-

Ir wire, 180 m diameter.95 Malvaez et al. were able to demonstrate that glutamate release 
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in the basolateral amygdala encodes outcome-specific motivation.74 Outside of glutamate, 

an enzyme-linked microelectrode array was reported for the detection of adenosine in the 

rat cerebral cortex.96 The effects of learned behavior and cue detection on acetylcholine 

transients have been analyzed in the rat frontal cortex using a Pt electrode with immobilized 

acetylcholinesterase and choline oxidase embedded on a ceramic substrate, similar in 

fabrication to the glutamate sensors detailed above.97-98 

2.3.2.2 Amperometry 

Although the methods discussed in this module focus on the in vivo detection of 

neurotransmitters, we chose to include this section on amperometric detection of single cell 

vesicular events (ex vivo) because of the fundamental importance exocytotic events play in 

understanding the mechanisms of neurotransmission. 

Exocytosis, the process by which neurotransmitter-filled vesicles fuse with and 

expel their contents out of the cell, is a primary mechanistic player in neurotransmission. 

Understanding exocytosis in terms of fusion pore size, duration, and the amount of content 

released during fusion is critically important to neurotransmission studies. When applied 

to single cell measurements at carbon microdisc electrodes, amperometry is a unique 

technique to investigate the release dynamics of exocytosis. This is because in 

amperometry an electrochemical potential is applied to the electrode and held at a constant 

value thus sampling frequency can be very high and time resolution can be on the order of 

microseconds. 

2.3.2.2.1 Electrode Platforms; Carbon Disc, Short Cylinders, & Microelectrode Arrays 

Carbon discs are the most common platform on which to perform single cell 

amperometry.99 These disc electrodes are fabricated by filling a glass capillary a single 
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carbon fiber and then pulling the capillary apart under heat and gravity to form a carbon-

glass seal. To form the disc shape, the microelectrode is beveled at a 45-degree angle. 

Oftentimes, to reinforce the carbon-glass seal, a small application of epoxy resin is applied 

to the electrode before experimentation. Despite variations among individual carbon fibers, 

it was found that factors such as charge and maximum current were independent of surface 

area and remained constant for disc electrodes made with 7 m fibers.100 Surface 

modification of carbon discs to increase sensitivity is ongoing.101 

Although most amperometry at cells utilizes carbon discs, carbon fibers are also 

employed, although they tend to be etched to decrease their size. The cylindrical shape 

enables insertion into the cell to monitor intracellular chemistry. Cylinders can also be used 

for vesicle impact electrochemical cytometry (VIEC).102 VIEC utilizes the immediate 

interaction of vesicle and carbon surface to explore direct vesicle release processes. VIEC 

has been used to model the vesicle membrane fusion and pore opening of PC12 cells103 as 

well as modeling the percentage of vesicle content oxidized with respect to cell location on 

the electrode surface.104 

Application of similarly designed carbon microelectrode arrays of 2, 3, and 7 disc 

electrodes were used to improve spatial and temporal resolution of cellular exocytosis 

measurements.105 Electrode tips were spaced 7 m apart, which demonstrated the ability 

to resolve simultaneous release events. Electrode crosstalk was analyzed for fast-scan 

cyclic voltammetric and amperometric detection using a 7-disc microarray.106 Crosstalk 

was minimal for amperometric detection because amperometric reactions occur rapidly. 

By contrast, oxidative processes measured with FSCV (described below) are slower since 

analysis involves redox cycling. Here, molecules can diffuse to adjacent electrodes 
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permitting substantial crosstalk. A 30 m x 30 m microelectrode array with 36 2-m-

width microelectrodes was fabricated via photolithography. Cells were adhered to the 

surface to spatially analyze the heterogeneity of exocytosis.107 

 

Figure 2.2: Vesicle impact electrochemical cytometry. (A) Optical micrograph of the 

experimental setup for exocytosis. Scale bar: 20 μm. Detection of exocytosis was carried 

out by applying 700 mV (versus Ag/AgCl reference electrode) to the electrode. (B) Scheme 

to show the different parameters for event analysis. Reprinted (adapted) with permission 

from Ye, D., Gu, C., Ewing, A. ACS Chem. Neurosci. 2018, 9(12), 2941-2947. Copyright 

2018 American Chemical Society. 

 

2.3.2.2.1 Key Studies in the Mechanisms of Exocytosis 

An ongoing debate on the key mechanisms of vesicular release continues to date.26 

Dynamin, an enzyme involved in the late stages of endocytosis, has been shown to have 

contrasting effects during exocytosis, namely being necessary in stabilizing the fusion pore 

and increasing fusion duration.108 When dynamin was inhibited, a shorter release duration 

and smaller pore size were observed supporting proposed the ‘kiss-and-run’ hypothesis.108 

Additionally, there is evidence that inhibiting actin, a transport mediating polymer, 

influences the closing mechanisms of pore fusion and results in larger pore size and 

fractional release supporting the ‘kiss-and-run’ hypothesis of release.109 Alpha-synuclein, 

a protein localized at nerve endings, was shown to increase fusion duration reducing ‘kiss-
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and-run’ characteristics pointing towards partial release fusion dynamics as being the 

normal function.110 Experimental and mathematically modeled exocytosis provided 

evidence that fusion pores do not exceed ⅕ of the radius of the vesicle, strongly detracting 

the notion of full fusion.111 Recently, Ye et al. showed mechanistic evidence of pore size 

and fusion duration fluctuations may explain the neuroprotective and neurotoxic effects of 

lidocaine.27 

Evidence of full vesicle fusion has been shown to be dependent on cell membrane 

tension where, amperometric and imaging data revealed that both partial release and full 

fusion were found to occur.112 

2.3.3 Fast-Scan Cyclic Voltammetry 

FSCV at carbon fiber microelectrodes (CFMs) can directly, electrochemically 

measure certain electroactive analytes with sub-second temporal resolution. 

2.3.3.1 Carbon Fiber Microelectrodes 

Carbon fiber microelectrodes (CFMs) are most often used when applying FSCV to 

the detection of neurotransmitters for their excellent biocompatibility and electroactive 

surface and their small size. Typical CFMs used in FSCV experiments are ~7 m in 

diameter and range in length from 20-150 m and benefit from small sampling areas, or 

‘hot spots’ of neuronal activity. 

Carbon has a wide-ranging chemical reactivity that allows for numerous paths to 

surface modification. Stable polymer deposition has been achieved.11, 13 Scanning to high 

positive potential limits has been shown to increase surface oxide density and adsorptive 

properties113-115 and carbon nanotube deposition has increased sensitivity towards 

bioamines.15, 116-117 
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2.3.3.2 Scan Rate 

FSCV utilizes fast scan rates (400 - 1000 V s-1) to detect fast changes in 

neurotransmitters. The electrical double layer at the CFMs charges and discharges, like a 

capacitor, into the electrode. At high scan rates, this ‘charging current’ is much larger in 

amplitude than the Faradaic processes that define neurotransmitter redox reactions. Thus, 

FSCV is background subtracted to remove the background charging or capacitive current. 

As different species adsorb to the CFM, the charge and discharge profile of the double 

layer capacitor changes and as such, this current cannot be subtracted out, appearing on 

FSCV color plots (raw data) as narrow peaks at switching potentials. Switching peaks 

cannot be easily be utilized to identify substrates since any adsorbed species on the CFM 

can create a switching peak. Thus, there has been significant efforts to remove this 

erroneous signal.118 

2.3.3.3 Waveforms 

The waveform is an integral part of FSCV analysis. A waveform is the combination 

of 2 or more linear voltammetric sweeps and a set of instructions that dictates how the 

potential changes with time at the electrode. Waveforms have been modified to increase 

the selectivity of analyte detection based on electrostatic and electron transfer differences 

between analytes. Commonly used FSCV waveforms are illustrated in Figure 2.3 below. 

2.3.3.4 Ambient Neurotransmitter Measurements with FSCAV 

Because FSCV is background subtracted, it is necessary to induce a change in 

neurotransmitter concentration, this has been achieved electrically119, 

pharmacologically120, and optically.121 Thus, the baseline, or ambient level concentrations, 

are unknown with FSCV recordings. This was, for decades, a key disadvantage of the 
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method. A great deal of information can be garnered from ambient level neurotransmitter 

measurements concentrations. 

 

Figure 2.3: Outline of current FSCV waveforms for various species and any 

modifications to the CFM. 

 

In 2013 Atcherley et al. introduced a method to quantify the absolute concentrations 

of dopamine at CFMs utilizing a FSCV-like technique that relies on waveform selectivity 

and a controlled adsorption step.22 This method, fast-scan controlled-adsorption 

voltammetry (FSCAV), represents a significant analytical breakthrough for the field of 

voltammetric monitoring of neurotransmitters.23 Pairing FSCV and FSCAV analysis 

enables a researcher to elucidate both the fast and slow chemical changes that define 

neurotransmission. Briefly, a dopamine-specific waveform is applied to the electrode, but 
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at a high enough frequency (100 Hz) that dopamine adsorption to the electrode is 

minimized. The waveform is then ‘switched off’ and a constant potential is applied instead 

for 5-15 seconds to allow dopamine to come to an adsorption equilibrium on the electrode 

surface. The dopamine waveform is then reapplied, resulting in rapid oxidation/reduction 

of the adsorbed dopamine, essentially quantifying the ambient dopamine surrounding the 

CFM. FSCAV was expanded to ambient serotonin measurements in 2017 by Abdalla et al. 

with slight modifications to the electrode surface, specifically, electrodeposition of Nafion 

prior to the experiment.21 

 

Figure 2.4: Serotonin FSCAV (A) Representative FSCV (i) and FSCAV 

(ii) color plots of 100 nM serotonin in vitro. (B) Cyclic voltammograms 

extracted from the vertical dashed lines in A(i) and A(ii) after normalization 

(current/maximum current). Vertical orange dashed lines represent 
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integration limits. Reprinted (adapted) with permission from Abdalla, A. et 

al. Anal. Chem. 2017, 89 (18), 9703-9711. Copyright 2017 American 

Chemical Society. 

 

2.3.3.5 Chronically Implanted Electrodes 

Typical FSCV experiments will last 3-8 hours with an acutely implanted electrode. 

Uncertainties regarding the long-term stability of and the foreign body reaction to 

chronically implanted microelectrodes were eased in 2010 when the Phillips lab reported 

stability and minimal tissue disruption, confirmed by immunohistochemical staining, up to 

four months post-implantation of a CFM.8 Chronically implanted CFMs have also be 

applied to awake-behaving studies of non-human primates with successful detection 

occurring up to 100 days post-implantation.122 A key feature to highlight is the fact that 

CFMs renew their surface when the applied potential is sufficiently high to oxidize carbon 

(i.e. >1.1 V vs Ag/AgCl). While this method likely contributes to long term stability in 

response, long-term waveform application may steadily etch the carbon electrode, 

decreasing the overall size of the electrode and compromising the carbon-glass seal.115 

2.3.3.6 Expanding Beyond Dopamine; Increasing the Scope of FSCV 

For several decades, in vivo FSCV measurements were limited to dopamine. A serotonin 

selective waveform was established in 1995123 and optimized with electrode modification 

in 2009 for selective in vivo serotonin analysis in rats.11 Two factors were crucial for the 

optimization of in vivo serotonin FSCV. First, a thin layer of Nafion, a cation exchange 

polymer, is necessary to block the electrode fouling effects of serotonin metabolites. 

Second, a high scan rate (1000 Vs-1) exploits the more favorable electron transfer kinetics 

for serotonin redox reactions vs. dopamine, enabling more sensitivity towards serotonin. 

In vivo serotonin FSCV has revealed evidence of dual transport mechanisms in the 
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serotonin synapse and discrete circuitry dependent on sublayer morphology within the 

medial prefrontal cortex.124-125 

 

Figure 2.5: Met-enkephalin FSCV (A) Triangular waveform (TW). (B) 

Modified sawhorse waveform (MSW). (C, D) Representative in vitro 

voltammetric data collected using the waveforms depicted in parts A and B, 

respectively, where the ordinate is the potential applied to the carbon-fiber 

electrode, the abscissa is time in seconds, and the current (nA) is depicted in 

false color. 2 μM M-ENK was introduced to the microelectrode at the time 

indicated by the red bar. Displayed voltammograms were extracted at the 

time indicated by the dashed line. Asterisks indicate electrode fouling. 

Reprinted (adapted) with permission from Schmidt, AC. et al. Anal. Chem. 

2014, 86 (15), 7806-7812. Copyright 2014 American Chemical Society. 
 

 Fast-scan cyclic voltammetry has been expanded to include hydrogen peroxide126-

127, adenosine12, 117, octopamine128, tyramine129, histamine130, norepinephrine131-132, 

molecular oxygen133-134, methionine-enkephalin135 and most recently, melatonin.30 
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Figure 2.6: Melatonin fouls the surface of the carbon-fiber microelectrode using the 

traditional FSCV waveform. The traditional waveform for FSCV detection is defined 

as a −0.4 V holding potential scanned to 1.3 V switching potential and back at a rate 

of 400 V/s and 10 Hz frequency (A). A three-dimensional color plot represents the 

change in current as a function of both voltage and time. Melatonin (5 μM) is 

manually injected at approximately 5 s and washed away at approximately 10 s 

(denoted by blue arrows). For the traditional waveform, a secondary oxidation 

product remains even after melatonin has been flushed away by buffer. The CV for 

melatonin is not stable over time (i–iv). (B) A waveform for melatonin that 

eliminates fouling at the electrode surface is shown (0.2 to 1.3 V at 600 V/s). CVs 

remain stable during the length of the injection (i–iii) and are not present after the 

analyte was washed away (iv). Reprinted (adapted) with permission from Hensley, 

AL., Colley, AR., Ross, AE. Anal. Chem. 2018, 90 (14), 8642-8650. Copyright 2018 

American Chemical Society. 

 

Another key disadvantage of FSCV is that it is traditionally limited to detection of 

individual analytes. Simultaneous detection of dopamine and oxygen in anesthetized rats 

was reported in the early 1990s133-134 while simultaneous dopamine and glucose detection 

was recently reported.88 The approach of multi-monitoring has been applied to studies of 

oxygen and dopamine changes in response to spreading depolarization.31 In 2016 

Samaranayake and colleagues published a report detailing pharmacological and 

mathematical evidence of histaminergic modulation of serotonin in the mouse 

hypothalamus.32 FSCV’s fast measurements captured an increase in the concentration of 
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extracellular histamine coincided with a decreased release of serotonin. Evidence pointed 

towards activation of H3 receptors on presynaptic serotonin terminals functioning as a 

negative feedback loop to inhibit serotonin release. From this study, it is clear that 

expanding the ability of FSCV to monitor multiple analytes simultaneously can resolve 

questions surrounding the interaction of neurotransmitters in the synaptic area. 

Appreciating the connection of neurotransmitters can be used to better design and 

understand therapeutic effects of drugs. 

 

Figure 2.7: Histamine FSCV. (ai & aii) The position of electrodes (stimulation and 

carbon fiber microelectrodes) in the mouse brain. (bi & bii) Representative color 

plots of the stimulated release of histamine and serotonin in the premammillary 

nucleus (PM) and stimulated release of serotonin in the substantia nigra pars 

reticulata (SNr), respectively. (ci & ii) Superimposed cyclic voltammograms of in 

vivo and in vitro histamine and serotonin signals taken from vertical dashed lines in 

the PM. (ciii) Comparison of normalized cyclic voltammograms of in vivo serotonin 

signals taken from vertical dashed lines in both PM and SNr. HA, histamine; 5‐HT, 

serotonin. Reprinted with permission from Samaranayake, S., et al. J. Neurochem. 

2016, 138 (3), 374-383. Copyright 2016 John Wiley and Sons 
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2.3.3.7 Instrumentation 

FSCV instrumentation has long been sourced from prominent academic labs, 

whose electronics facilities assemble systems (e.g., University of North Carolina’s UEI 

potentiostat, University of Washington’s FSCV system, etc.). Limited technical and 

customer support, long purchasing lead times, and significant costs involved with such 

academic systems led to the emergence of commercial FSCV instrumentation options (e.g., 

Pine Research Instrumentation WaveNeuro, Pinnacle Technologies, Inc.), which have 

supported growth in the area of electroanalytical neurochemistry. The Dagan Corporation 

is an additional supplier of FSCV potentiostats as well. 

Data analysis software is available from several commercial or academic entities. 

Pinnacle Technologies, Inc. includes their FSCV software package with purchase of a 

system. The HDCV software package can be purchased from UNC at Chapel Hill, the 

WCCV software package can be purchased from Knowmad Technologies, LLC (Tuscon, 

AZ) or the Demon Voltammetry & Analysis software suite is freely available to academics 

and non-profits. (Wake Forest) 

2.4 Prospects and Conclusions 

Analytical neurotransmitter measurements is a thriving and cutting-edge field. 

Conventional limits of microdialysis are continuing to be pushed further to allow for less 

invasive, faster, more efficient sampling and separation methods. Decreasing the footprint 

of microdialysis probes through microfabrication will allow for more reliable sampling 

from intact tissue. With the increasing body of work demonstrating the advantages of 

locally perfusing anti-inflammatory agents, the field of microdialysis sampling, as a whole, 

stands to benefit from adopting this method. Along with smaller membranes, the resolution 
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of microdialysis is now steadily under the one-minute mark for on-line analysis with some 

methods reaching single second resolution. The trend is expected to continue with the 

joining of efficient microfabricated probes and single-second on-line detection. 

Recent developments in biosensor technology have explored the use of substrate 

anchored aptamers for the selective detection of molecules. Aptamers are short chained 

single stranded DNA or RNA that have a unique 3D conformation. They are synthetically 

produced and can therefore be tailor-made for various molecules. DNA based aptamer 

sensors that selectively bound to dopamine have been explored for their applications in 

dopamine monitoring.136-137 Additionally, the Andrews lab at UCLA has been exploring 

the use of DNA aptamer-based sensors for dopamine138 and have been expanding the 

applicability by detecting glucose, serotonin and dopamine in mouse serum with tailor-

made field-effect transistors.139 

A new class of multimodal monitoring has recently emerged as a promising method 

to stimulate and monitor numerous processes simultaneously. In a 2017 Nature 

Neuroscience report, Park and colleagues described a miniature device consisting of six 

individual electrodes, two microfluidic channels and a fiber optic channel for 

photostimulation.140 In vivo proof of concept was demonstrated by implantation in the 

medial prefrontal cortex of a mouse. There, viral injections were delivered through the 

device’s microfluidic channels followed by photostimulation and electrophysiology 

recordings. This device demonstrated favorable chronic stability in awake-behaving mice. 

Additionally, Patriarchi and colleagues introduced a novel fluorescence intensity-based 

genetically encoded dopamine indicator coined “dLight1.”141 Transfection of a viral 

protein into the striatum permitted two-photon imaging of dopamine response to an 
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electrical stimulation and cocaine challenge in slice preparations in addition to 

optogenetically stimulated dopamine release. Fluorescence data were also collected from 

awake-behaving mice in response to pharmacological administration and visuomotor 

learning tasks. Multimodal monitoring represents a substantial advancement in the field of 

neuroanalysis and the growing field of optogenetics. 

Recently a novel method has been developed, by Mei Shen’s group, to detect non-

electroactive neurotransmitters that utilizes ionic transfer across an immiscible liquid-

liquid interface (ITIES).142 A nanopipet filled with 1,2-dichloroethane was submerged into 

an aqueous solution of acetylcholine, tyramine, and serotonin. Electrodes placed in each 

phase allows the interface to function as the working electrode (WE). A voltammetric 

sweep is applied to one of the electrodes that can detect ionic transfer when charged 

molecules are polarized and cross the interface (WE). This method was applied to the 

detection of gamma-aminobutyric acid (GABA) in aqueous solution in 2018 with slight 

modification.143 Due to GABA being neutral at pH ~ 7, it required the addition of octanoic 

acid in the organic phase (nanopipet filling) to facilitate transfer of GABA through the 

liquid-liquid interface. Linear current increases were shown for serial additions of GABA 

concentrations for a small range. However, these experiments show the exciting first steps 

of a new analytical strategy to quantify non-electroactive neurotransmitters in aqueous 

solutions. 

Single cell amperometric recordings of exocytosis appears to be focusing on a 

consensus of ‘kiss-and-run’ release as being the main or only method of release. 

Investigations of proteins regulating the fusion pore size will continue to shed light on 

possible reasons for impaired neurotransmission during neurodegenerative disease and 
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other psychiatric disorders. Vesicle impact electrochemical cytometry and microelectrode 

arrays are essential tools for investigating intracellular vesicle dynamics and heterogeneous 

exocytotic events, respectively. 

 

Figure 2.8: Newly introduced detection mechanism based on pH 

modulation from an organic acid in the oil phase. This mechanism enables 

the direct electrochemical detection of γ-aminobutyric acid (GABA), an 

important neurotransmitter and a zwitterion, with nanoITIES pipet 

electrodes. Chemical structures of GABA at pH ≈ 7 (a) and pH ≈ 3 (b). The 

pKa of the amine and carboxylic acid moieties of GABA are 10.22 and 4.53, 

respectively. Without organic acid modulation, GABA is not detected; in 

contrast, after adding an organic acid, octanoic acid, to the oil phase 

contained inside the pipet, GABA is detected (c). Reprinted (adapted) with 

permission from Iwai, NT., et al. Anal. Chem. 2018, 90 (5), 3067-3072. 

Copyright 2018 American Chemical Society. 

 

FSCV continues to be a leading method for neurotransmitter analysis in the quality 

and accuracy of data it delivers. The scope and quantity of analytes are continually being 
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improved. Additionally, new brain regions are being explored as they are implicated in 

emerging disease states. We anticipate in vivo monitoring of trace metals with FSCV in the 

very near future. Trace metals, such as Cu2+, act as important cofactors in several synaptic 

processes and will help create a more thorough understanding of neurotransmission. FSCV 

analysis will continue to play a foundational role in determining the synaptic underpinnings 

of neurotransmitter regulation. 

In conclusion, a clear gap persists in understanding the fundamental chemistry of 

the brain with emphasis placed on obtaining meaningful analytical measurements of 

neurotransmitters. Targeted brain diagnoses and therapeutics are very difficult without 

these paired measurements. Understanding the role and function of neurotransmitters in 

healthy and diseased states would serve to greatly improve approaches to clinical treatment.  

This module served to outline the most recent, cutting edge analytical 

advancements in neurotransmitter analysis spanning primarily the last five years. There is 

a rich literature of important developments and applications for monitoring molecules in 

neuroscience. The discussion began with an outline of the analytical challenges 

encountered when monitoring neurotransmitters. Two major classes of analytical methods, 

in vivo microdialysis sampling and direct detection at microelectrodes, were highlighted 

with their respective advantages and disadvantages. Cutting edge advancements, 

applications and prospects of these methods were showcased. 
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CHAPTER 3 

VOLTAMMETRIC CHARACTERIZATION OF THE CENTRAL 

NERVOUS HISTAMINERGIC SYSTEM IN MALE & FEMALE MICE1

 
1 Berger, SN., Hersey, M., Baumberger Altirriba, BM., Samaranayake, S., Bain, I. 

Hashemi, P. Voltammetric characterization of the ventral nervous histaminergic system in 

male and female mice. In preparation. J. Neurochem. 
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3.0 Abstract 

Histamine is an important molecule that plays a key role mediating inflammation 

throughout the body. In the central nervous system (CNS), histamine has a demonstrated 

ability to function as a neuromodulator. Historically, a substantial amount of 

pharmacological testing was carried out using only male animal models, however, in 2015 

the National Institutes of Health mandated that sex be included as a biological variable. 

Histamine remains understudied in the CNS especially with respect to how the male and 

female histaminergic systems respond to pharmacological treatments. In this chapter, we 

first compare the male and female systems and the influence the estrous cycle has on the 

histamine system under control conditions. Next, we target histamine receptors, vesicular 

packaging, synthesis, and histamine metabolism to explore differences between the sexes. 

We found robust similarities between male and female evoked histamine levels and no 

difference throughout the estrous cycle. Additionally, we found similar responses across 

sexes regarding receptors H1 and H2 antagonism, inhibition of vesicular packaging, and 

inhibition of synthesis and metabolism. Our data revealed that sex should be considered 

when evaluating the effectiveness of H3 targeting compounds as antagonism via 

thioperamide did not elevate histamine levels above control in female mice, even when 

pretreated with an H3 agonist to first decrease histamine. We posit that cycling hormones 

in pre-menopausal females provide a crucial anti-inflammatory role and regulate histamine 

levels in the brain as an evolutionary trait. Our study demonstrates the highly conserved 

nature of neurological systems and will aid in designing therapeutic strategies for both male 

and female sexes. 
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3.1 Introduction 

Histamine is a biological amine with a well-established role in mediating 

inflammation, found in immune cells including glia1, mast cells2-3, and T-cells.4 In addition 

to its roles in the immune system, histamine has also been identified as a neuromodulator.1, 

5 In the central nervous system, histamine cells bodies reside in the tuberomammillary 

nucleus (TMN) with projections that innervate throughout the brain.6-8 Studies have shown 

that histamine is able to modulate the release of other neurotransmitters such as serotonin, 

dopamine, acetylcholine, glutamate and GABA.5 The majority of previous literature has 

been based on experimentation of male animal models (typically mouse or rat) and that 

data is then extrapolated to female models assumed to behave and respond in sufficiently 

similar ways. In 2015, the NIH mandated that all animal-based experiments carried out 

under their funding would have to consider sex as a biological variable.9 Differences in the 

peripheral histamine systems of male and female mice have been shown,10-11 along with 

previous suggestions that histamine may be present at higher basal levels in females.12-14 

Additionally, hypothalamic concentrations of histamine and its associated enzymes are 

found to vary through the estrous cycle.15-18 However, due to the difficulties with 

measuring histamine in the brain, there is a clear lack of information regarding central 

histamine chemistry between the sexes and if peripheral histamine relates to central. 

CNS histamine has been previously studied using brain homogenates15, 19, in vivo 

microdialysis coupled to high-performance liquid chromatography20-21, and 

electrophysiology.22-23 More recently, the Hashemi lab developed a fast-scan cyclic 

voltammetry (FSCV) method to selectively detect histamine in vivo.24-25 The power of our 

technique is that it creates minimal inflammatory response and directly measures both 
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histamine and serotonin at a single carbon fiber microelectrode (CFM).24 We showed that 

evoked histamine resulted in an inhibition of serotonin release due to H3 receptors present 

on 5-HT terminals; this data was in agreement with previous findings.26-27 

In this study we investigated potential sex differences of the central histaminergic 

system between male and female. We first use FSCV to characterize the release and 

reuptake characteristics of histamine release of both sexes and the effects of this release on 

serotonin under control conditions. We then compared the evoked release of histamine 

throughout the four stages of the mouse estrous cycle, namely estrus, metestrus, diestrus, 

and proestrus. Next, an extensive pharmacological screening is undertaken to target 

histamine receptors H1R, H2R, H3R, H4R, histamine synthesis, vesicular packaging, and 

metabolism in both male and female mice and compare the effects of each. Interestingly, 

the only significant differences we find were when targeting H3R in females, leading us to 

explore the possibility of cycling hormones playing a key role in the female mouse’s ability 

to mitigate immunologic signaling. Finally, we compared the release and reuptake profiles 

of stimulated histamine with electrode placement in the posterior hypothalamus and found 

that regions receiving significant input from hormones, (i.e. ventromedial nucleus) are 

more likely to have variable profiles. This study provides broad insight into the 

histaminergic system of male and female mice and will yield better understanding of how 

an understudied neurochemical system functions. 

3.2 Materials and Methods 

Chemicals and Reagents 

 All chemicals were used as received from the supplier. Diphenhydramine 

hydrochloride (20 mg kg-1; Sigma Aldrich, St. Louis, MO, USA), zolantidine dimaleate 
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(10 mg kg-1; Tocris, Minneapolis, MN, USA), immepip dihydrobromide (5 mg kg-1; Sigma 

Aldrich), thioperamide maleate (20 mg kg-1 or 50 mg kg-1; Sigma Aldrich and Tocris), 

tacrine hydrochloride (2 mg kg-1; Tocris), and α-fluoromethylhistidine (20 mg kg-1; 

Toronto Research Chemicals, North York, ON, CAN) were all dissolved in sterile saline 

(0.9% NaCl solution, Mountainside Medical Equipment, NY, USA) at 5 mL kg-1. 

Reserpine (10 mg kg-1; Sigma Aldrich) was dissolved in 0.1 % acetic acid (Sigma Aldrich) 

in sterile saline at 5 mL kg-1. Tetrabenazine (Sigma Aldrich) was dissolved in 10 % DMSO 

(Sigma Aldrich) in sterile saline with 1 M HCl (10 µL mL-1 injection volume). All solutions 

were made fresh at the time of injection and all injections were given via intraperitoneal 

(ip) injection. Urethane (Sigma Aldrich) was dissolved in sterile saline as a 25 % w/v 

solution and administered at 7 µL kg-1.  

Electrode Fabrication 

All electrodes are made in house. A single carbon fiber is aspirated into a 

borosilicate capillary (0.6 mm x 0.4 mm x 10 cm; OD x ID x L) (A-M Systems, Sequim 

WA, USA) and sealed under gravity and heat by a vertical pipette puller (Narishige, 

Amityville, NY, USA) to create two separate electrodes. The protruding fiber is trimmed 

under light microscope to ~150 µm by scalpel. An electrical connection is forged with the 

fiber through a stainless-steel connecting wire (Kauffman Engineering, Cornelius, OR, 

USA) and silver epoxy. Finally, a thin layer of Nafion (LQ-1105, Ion Power, New Castle, 

DE, USA) is electrodeposited onto the fiber surface at 1 V for 30 s; the coated fiber is dried 

for 10 min at 70 °C.28 
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Data Collection and Analysis 

 Fast-scan cyclic voltammetry was performed on anesthetized mice using a Chem-

Clamp potentiostat (Dagan Corporation, Minneapolis, MN, USA), custom built hardware 

interfaced with PCIe 6341 & PCI 6221 DAC/ADC cards (National Instruments, Austin, 

TX), and a Pine Research headstage (Pine Research Instruments, Durham, NC, USA). 

WCCV 3.06 software (Knowmad Technologies LLC, Tucson, AZ, USA) was used to 

control the hardware and perform data analysis. The histamine waveform (-0.5 V to -0.7 V 

to +1.1 V to -0.5 V at 600 V s-1) was applied at 60 Hz for 10 min, then at 10 Hz for 10 min 

prior to data collection. Data were collected at 10 Hz. Histamine was evoked via biphasic 

stimulation applied through a linear constant current stimulus isolator (NL800A Neurolog, 

Digitimer North America LLC, Fort Lauderdale, FL, USA) with stimulations at 60 Hz, 360 

µA, 2 ms in width, and 2 s in length.  

Data were collected and filtered on WCCV software (zero phase, Butterworth, 3 

kHz low pass filter). Four control evoked files, 10 min apart, were averaged for the control 

evoked histamine signal after which one compound from 3.2.1 was administered and files 

were collected at 0 min, 5 min, 10 min, and every 10 min thereafter until 120 min. For 

immepip-thioperamide experiments, data were collected for 60 min as described followed 

by administration of thioperamide immediately after the 60 min file was collected. Files 

were then collected for an additional 60 min in the same fashion as described above. 

Currents obtained were converted to concentrations through previously generated 

calibration factors for both histamine (2.825 µM nA-1) and serotonin (11 µM nA-1).24-25 At 

the completion of each experiment, a large voltage (~10 V; ~2 min) was applied to the 

CFM to lesion the surrounding tissue for histological analysis. Mice were euthanized, 
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brains were rapidly harvested and stored in 4% paraformaldehyde solution. Prior to 

sectioning, brains were transferred to 30% sucrose solution for 24 h minimum. Brains were 

rapidly frozen and sectioned into 25 µm slices (Thermo Scientific Cryotome FSE, Thermo 

Scientific, Waltham, MA, USA) and visualized under light microscope to confirm 

electrode placements. 

Statistical Analyses 

Average control response was generated from four current vs time traces per animal 

and averaged to create an overall group average. To determine the t 1/2, a code was custom 

written in Excel to fit the reuptake component of the curve and calculate the time taken to 

reach half the maximum amplitude. Exclusion criteria were based on outliers (via Grubbs 

test) and animals that did not survive the experimental paradigm. Standard error of the 

mean (SEM) was calculated using the average response of each animal (n = # animals). 

Significance between two points was determined by 2-tailed paired t-test and taken as p < 

0.05. For non-normally distributed data (via Shapiro Wilk test), the Kruskal-Wallis H test 

was used to determine significance and taken as p<0.05. All error bars represent the 

standard error of the mean (SEM). 

Animals and Surgical Procedure 

Animal procedures and protocols were in accordance with the regulations of the 

Institutional Animal Care and Use Committee (IACUC) at the University of South 

Carolina, accredited through the Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC). Male and female C57BL/6J mice aged 6-12 weeks 

were used. Animals were group housed with ad libitum access to food and water and were 

kept on a 12 h light/12 h dark cycle (lights on 0700/lights off 1900). 
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 Stereotaxic surgery (David Kopf Instruments, Tujunga, CA, USA) followed 

induction of deep and sustained anesthesia from an intraperitoneal injection of urethane 

(above). Mouse body temperature was maintained using a thermal heating pad (Braintree 

Scientific, Braintree, MA, USA). All surgical coordinates were taken in reference to 

bregma.29 A Nafion coated CFM was lowered into the posterior hypothalamus (AP: -2.45, 

ML: 0.50, DV: -5.45 to -5.55) and a stimulating electrode (insulated stainless-steel, 

diameter: 0.2 mm, untwisted, Plastics One, Roanoke, VA, USA) was placed into the medial 

forebrain bundle (AP: -1.07, ML: +1.10, DV: -5.00).24 A pseudo-Ag/AgCl reference 

electrode, created by chloridizing a polished silver wire in HCl (15 s in 1 M HCl at 5 V), 

was placed in the contralateral hemisphere.  

 For the analysis of sex and estrous cycle differences control histamine and serotonin 

data were pooled. Due to the sensitivity of the measurements being made, we are unable to 

determine the estrous cycle stage prior to the experiment as we have observed in previous 

animals that doing so influences release and reuptake characteristics. For cycle 

determination, vaginal lavage was performed following the conclusion of data collection. 

Briefly, approximately 10 µL of sterile saline was administered and quickly removed from 

the vagina and then visualized under low power light microscope to determine estrous cycle 

stage via cytological examination.30 (Figure B1) 

3.3 Results 

3.3.1 Control Evoked Histamine and Serotonin Inhibition Does Not Vary Between Sexes 

 The stimulated histamine release and the resulting serotonin inhibition is shown in 

Figure 3.1. Panel A is a representative color plot of histamine FSCV with a CV inset in 

the top right corner. Averaged male stimulated histamine release (Ampmax: 7.54 ± 1.20 µM) 
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and serotonin inhibition (Ampmax: 42.53 ± 4.74 nM) is shown in blue in (B). In (C), the 

female stimulated histamine release (Ampmax: 7.11 ± 1.10 µM) and serotonin inhibition 

(Ampmax: 45.33 ± 4.72 nM) is shown in red. Tabulated in (D) are the max amplitude values 

for overall histamine peak release (Ampmax male-female: p = 0.80) and serotonin inhibition 

(Ampmax male-female: p = 0.98), the ratio of peak release to peak inhibition (HA/5HT: 

male: 0.19 ± 0.02; female: 0.16 ± 0.02; p = 0.34), and the rate of decay for the stimulated 

histamine release (t1/2 : male: 3.1 ± 0.4 s; female: 3.9 ± 0.7 s; p=0.34). The sample size was 

equal for male and female mice at n=20. 

 

Figure 3.1: Control evoked histamine is not significantly different between male 

and female mice. A) representative color plot shows the stimulated release and 

reuptake of histamine as the green event and the blue event is the inhibition of 

serotonin. Inset in the top right corner is the characteristic CV with peaks 

occurring around 0.2 V for histamine and 0.7 V for serotonin oxidation. The 

concentration vs time traces for the release of histamine and inhibition of 

serotonin is shown for B) male and C) female mice. The electrical stimulation (2 

s) is represented by the grey bar. D) tabulated data of release and inhibition. 
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3.3.2 Control Evoked Histamine and Serotonin Inhibition Does Not Vary Throughout 

the Estrous Cycle 

 We next evaluated the effect of estrous cycle stage on stimulated histamine release 

and inhibition of serotonin. Figure 3.2A shows the stimulated histamine release throughout 

estrus, metestrus, diestrus, and proestrus. We found no significant difference in the evoked 

histamine amplitude (Ampmax: estrus (blue; n=23): 6.58 ± 0.55 µM; metestrus (orange; 

n=16): 6.82 ± 0.74 µM; diestrus (yellow; n=10): 7.86 ± 1.33 µM; proestrus (green; n=10): 

5.80 ± 1.83 µM; p = 0.84 Kruskal-Wallis H-test) or t1/2 (estrus: 3.9 ± 0.7 s; metestrus: 5.4 

± 1.1 s; diestrus: 3.8 ± 0.9 s; proestrus: 4.3 ± 1.1 s; p = 0.79 Kruskal-Wallis H-test) of 

reuptake curve across estrous stages. The peak serotonin inhibition is shown across cycle 

stages in Figure 3.2B (Ampmax: estrus (blue; n=23): 44.70 ± 4.04 nM; metestrus (orange; 

n=16): 40.76 ± 5.93 nM; diestrus (yellow; n=10): 37.04 ± 4.92 nM; proestrus (green; 

n=10): 31.74 ± 5.17 nM; p = 0.27 Kruskal-Wallis H-test). These data are tabulated in Figure 

3.2C. 

 

Figure 3.2: Evoked histamine release does not significantly differ throughout 

estrous. (A) Evoked histamine release and (B) serotonin inhibition for female 

mice in estrous (blue, n=23), metestrus (orange, n=16), diestrus (yellow, n=10), 

and proestrus (green, n=10). The shaded grey bar represents the 2 s electrical 

stimulation. (C) Tabulated data covering the maximum amplitude of [histamine] 
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release, t1/2 of histamine clearance, maximum inhibition of [serotonin], and the 

ratio of [histamine]/[serotonin]. Data were analyzed via Kruskal-Wallis H-test. 

Significance was taken as p<0.05. 

 

 We observed the occurrence of two distinct release profiles in female mice that 

occurred exclusively while in estrus. Figure 3.3 shows the single (A), double (B), and 

combined (C) release profiles for evoked histamine. There was not a significant difference 

in the peak histamine amplitude (Ampmax: single (red; n=13): 6.70 ± 0.94 µM; double 

(purple; n=10): 6.42 ± 0.47 µM; p = 0.83 unpaired t-test) or in peak serotonin inhibition 

(Ampmax: single (red; n=13): 39.85 ± 5.65 nM; double (purple; n=10): 50.97 ± 5.38 µM; p 

= 0.88 unpaired t-test) between the single and double release events. At the end of data 

collection, a large voltage was passed through the electrode to lesion the tissue from which 

our measurements are made. This allows for histological verification of the electrode 

location placement. We hypothesized that the single and double release events were region 

specific. We found that electrode placements anterior to the target coordinates were more 

likely to result in a double peaked release. (Figure B2) 

 

Figure 3.3: Comparison of evoked histamine and serotonin signals during estrus. 

The different release profiles obtained for [histamine] vs time in female mice during 

estrus are shown in (A) single release (red), (B) double release (purple), and (C) the 

combined average of the single and double profiles. Maximum amplitude of 

histamine release ([HA]Ampmax: single (red; n=13): 6.70 ± 0.94 µM; double (purple; 
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n=10): 6.42 ± 0.47 µM; p = 0.83 unpaired t-test) and serotonin inhibition 

([5HT]Ampmax: single (red; n=13): 39.85 ± 5.65 nM; double (purple; n=10): 50.97 ± 

5.38 µM; p = 0.88 unpaired t-test) were not significantly different. Significant was 

taken as p<0.05. 

 

3.3.3 H1R and H2R Pharmacology 

 First, we investigated how the antagonism of post-synaptic receptors H1 and H2 

would affect the release and reuptake of hypothalamic histamine. Figure 3.4 shows the 

male and female response to diphenhydramine (DPH) (20 mg kg-1), an H1 antagonist, and 

zolantidine (10 mg kg-1), an H2 antagonist. In column (A) the administered compound and 

sex is given, (B) a representative color plot of histamine release and serotonin inhibition, 

(C) cyclic voltammograms confirming the electrochemical identities of histamine and 

serotonin, (D) concentration vs time plots of control evoked histamine release (blue) and 

following drug administration (green). No significant change in evoked histamine release 

was seen in male mice given DPH (Di) (n=5; Ampmax: control: 9.22 ± 3.06 µM; post-drug: 

9.38 ± 2.66 µM; p = 0.83 paired t-test) or zolantidine (Diii) (n=5; Ampmax: control: 5.84 ± 

0.55 µM; post-drug: 4.90 ± 0.60 µM; p = 0.33 paired t-test). Significant slowing of 

histamine reuptake was obtained 50 min following administration of DPH (Di) (t1/2 : 

control: 2.7 ± 0.4 s; post-drug: 7.2 ± 1.1 s; p = 0.014 paired t-test) but not following 

zolantidine (Diii) (t1/2 : control: 4.2 ± 1.3 s; post-drug: 3.2 ± 1.0 s; p = 0.46 paired t-test). 

In (Dii), female mice respond to DPH with a slight decrease in histamine amplitude (n=4; 

Ampmax: control: 6.78 ± 0.16 µM; post-drug: 5.34 ± 0.56 µM; p = 0.077 paired t-test) and 

a slowing of reuptake (t1/2 : control: 3.3 ± 0.8 s; post-drug: 12.0 ± 2.6 s; p = 0.042 paired t-

test). Female response to zolantidine was similar to male with no change in histamine 

amplitude (n=5; Ampmax: control: 5.40 ± 0.65 µM; post-drug: 5.45 ± 0.87 µM; p = 0.96 
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paired t-test) or clearance profile (t1/2 : control: 2.7 ± 0.7 s; post-drug: 3.8 ± 1.6 s; p = 0.59 

paired t-test).  

 

Figure 3.4: Post-synaptic H1 and H2 receptor targeting highlights differential 

receptor-release communication mechanisms. (A) the drug and mouse’s sex are 

listed. (B) a representative color plot for each grouping of animals is shown. The 

green bar represents the 2 s electrical stimulation. (C) a representative cyclic 

voltammogram from each cohort of animals. The CV is obtained from the vertical 

dashed line in each color plot in B. The blue shading covers the oxidation peak of 

histamine and the red shading highlights the oxidation serotonin. (D) concentration 

versus time traces for control (blue) and post-drug (green) evoked histamine. Traces 

are obtained from the horizontal dashed lines in color plot in Bi-iv. 

 

3.3.4 Distinctive H3R Autocontrol Between Males and Females 

 We established there was no difference between histamine release, serotonin 

inhibition, or the ratio of HA/5HT between male and female mice in 3.3.1. We wanted to 

further investigate the regulatory role of H3 receptors in male and female mice by 
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administering an H3R agonist, immepip (5 mg kg-1), and an H3R antagonist, thioperamide 

(20 mg kg-1). 

In Figure 3.5, male (Di) and female (Dii) mice respond similarly to H3R agonism 

with an overall decrease in max amplitude (male, n=5: Ampmax: control: 7.72 ± 1.55 µM; 

post-drug: 4.77 ± 1.56 µM; p = 0.024; female, n=5: Ampmax: control: 6.20 ± 0.86 µM; post-

drug: 3.58 ± 0.51 µM; p = 0.005) and no change in histamine clearance (male: t1/2 : control: 

4.5 ± 1.7 s; post-drug: 2.9 ± 0.6 s; p = 0.4; female: t1/2 : control: 5.6 ± 1.8 s; post-drug: 5.6 

± 2.6 s; p = 1 paired t-test). 

 

Figure 3.5: H3 targeting drugs highlight distinct response of male and female mice. 

(A) the drug and mouse’s sex are listed. (B) a representative color plot for each 

grouping of animals is shown. The green bar represents the 2 s electrical 

stimulation. (C) a representative cyclic voltammogram from each cohort of 

animals. The CV is obtained from the vertical dashed line in each color plot in B. 
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The blue shading covers the oxidation peak of histamine and the red shading 

highlights the oxidation serotonin. (D) concentration versus time traces for control 

(blue) and post-drug (green) evoked histamine. Traces are obtained from the 

horizontal dashed lines in color plot in Bi-iv. 

 

Thioperamide administration resulted in a significant increase in evoked 

hypothalamic histamine in male mice (Diii) (n=5; Ampmax: control: 8.83 ± 1.35 µM; post-

drug: 12.10 ± 1.75 µM; p=0.046) while trending toward a significant slowing of reuptake 

(t1/2 : control: 4.5 ± 1.7 s; post-drug: 9.9 ± 2.2 s; p = 0.051). However, in the female mice, 

no such change in amplitude was observed. Female mice (Div) exhibit no change in 

histamine amplitude (n=5; Ampmax: control: 7.37 ± 1.40 µM; post-drug: 7.01 ± 1.65 µM; 

p=0.39) or rate of reuptake (t1/2 : control: 4.2 ± 1.6 s; post-drug: 3.9 ± 1.3 s; p = 0.48) 

following the same dose of thioperamide. 

 

Figure 3.6: Thioperamide raises histamine to control levels 

following immepip pretreatment. (A) FSCV [HA] vs time profiles 

of evoked histamine for control (n=5, blue), 60 min following 

immepip (n=5, orange), and 40 min following thioperamide after 

60 min immepip (n=4, green). Error bars have been eliminated for 

clarity. (B) max amplitude of evoked histamine for control (blue), 

60 min immepip (orange), and 40 min following thioperamide 

after initial 60 min immepip (green). Significance between two 

points was taken as p < 0.05 
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Given that females did not respond to 20 mg kg-1 thioperamide but did respond to 

the H3 agonist, immepip, we hypothesized there was a threshold level of extracellular 

histamine that female mice were unable to surpass. Therefore, we administered immepip 

(5 mg kg-1) for 60 min to decrease evoked histamine and then administered thioperamide 

(20 mg kg-1) to determine if histamine levels would increase to control or exceed control 

levels. Figure 3.6A shows the [HA] vs time profiles of control (blue), 60 min post-immepip 

(orange), and 40 min post-thioperamide (green). Error bars have been omitted for clarity. 

Following a significant decrease from immepip (vida supre), we show that thioperamide 

elevates stimulated histamine only to around control level (Ampmax: immepip: 3.58 ± 0.51 

µM; post-immepip-thioperamide: 5.89 ± 1.13 µM; p=0.13); we were unable to increase 

evoked histamine in female mice to above control (Ampmax: control: 6.20 ± 0.86 µM; post-

immepip-thioperamide: 5.89 ± 1.13 µM; p=0.83 paired t-test). 

3.3.5 Histamine is Packaged via the Vesicular Monoamine Transporter 

 We investigated the packaging mechanisms of histamine in the brain using two 

vesicular monoamine transporter (VMAT) inhibitors with different affinities for VMAT1 

and VMAT2 (tetrabenazine (TBZ): 10 mg kg-1; reserpine: 10 mg kg-1). Each compound 

functions by inhibiting packaging of histamine (and other neurochemicals) into vesicles 

prior to exocytosis which results in the intracellular neurochemicals being enzymatically 

metabolized in the cytosol. Both reserpine and tetrabenazine required modification to the 

saline vehicle to fully dissolve the compounds. Reserpine was dissolved in 0.1 % AcOH in 

saline and tetrabenazine required 10% DMSO in saline with 1 M HCl (10 µL mL-1). 

Vehicle solutions were administered (5 mL kg-1) to each mouse for 30 min between control 

files and drug files to determine any vehicle effects on the evoked histamine and serotonin 
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profiles. Vehicle injections did not significantly change the evoked release in males or 

females; however, female mice did have a more obvious change in release amplitude 

following vehicle.  

 Reserpine vehicle (0.1% AcOH in saline) injection did not significantly change 

histamine amplitude from control (male, n=5: Ampmax: control: 5.41 ± 1.01 µM; AcOH 

vehicle: 5.43 ± 0.64 µM; p=0.98) (female, n=5: Ampmax: control: 9.17 ± 1.22 µM; AcOH 

vehicle: 7.76 ± 1.01 µM; p=0.053). However, 60 min following reserpine injection, a 

significant decrease in evoked histamine amplitude was observed in both male (Figure 3.7 

Di) (Ampmax: AcOH vehicle: 5.43 ± 0.64 µM; reserpine: 2.72 ± 0.47 µM; p=0.009) and 

female (Figure 3.7 Dii) mice (Ampmax: AcOH vehicle: 9.17 ± 1.22 µM; reserpine: 6.53 ± 

1.01 µM; p=0.016). There was no change in the rate of reuptake of histamine for either sex 

(male: t1/2 : control: 2.4 ± 0.7 s; reserpine: 2.8 ± 0.7 s; p=0.51) (female: t1/2 : control: 6.3 ± 

2.5 s; reserpine: 4.4 ± 1.6 s; p=0.23).  

Tetrabenazine vehicle (acidified 10% DMSO) administration did not significantly 

change control evoked histamine (male, n=5: Ampmax: control: 7.51 ± 1.32 µM; DMSO: 

7.08 ± 1.42 µM; p=0.18) (female, n=5: Ampmax: control: 9.02 ± 1.45 µM; DMSO: 7.56 ± 

0.75 µM; p=0.27). After the mice received TBZ, a significant decrease in evoked histamine 

was observed for both sexes (male: Ampmax: DMSO: 7.08 ± 1.42 µM; TBZ: 5.49 ± 1.44 

µM; p=0.023) (female: Ampmax: DMSO: 7.56 ± 075 µM; TBZ: 3.83 ± 0.40 µM; p=0.008) 

3.3.6 Pharmacological Manipulation of Histamine Synthesis and Metabolism 

 Finally, we targeted the beginning and end of histamine’s metabolic life cycle in 

the central nervous system. We used tacrine, an N-methyltransferase inhibitor, and α-

fluoromethylhistidine, an L-histidine decarboxylase inhibitor, to accomplish this. 
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Figure 3.7: VMAT inhibition lowers evoked histamine release. (A) the drug and 

mouse’s sex are listed. (B) a representative color plot for each grouping of animals 

is shown. The green bar represents the 2 s electrical stimulation. (C) a 

representative cyclic voltammogram from each cohort of animals. The CV is 

obtained from the vertical dashed line in each color plot in B. The blue shading 

covers the oxidation peak of histamine and the red shading highlights the oxidation 

serotonin. D) concentration versus time traces for control (blue) and post-drug 

(green) evoked histamine. Traces are obtained from the horizontal dashed line 

‘histamine’ in color plots in Bi-iv. 

 

Administration of tacrine to male mice (Figure 3.8 Di) resulted in no change in histamine 

amplitude (n=5, Ampmax: control: 9.56 ± 0.89 µM; tacrine: 9.41 ± 1.22 µM; p=0.92) and a 

slowed clearance of histamine from the extracellular space (t1/2 : control: 2.8 ± 0.8 s; 

tacrine: 6.0 ± 0.7 s; p=0.025). Female mice (Figure 3.8 Dii) displayed no amplitude change 

following tacrine (n=4, Ampmax: control: 7.01 ± 1.79 µM; tacrine: 7.74 ± 1.85 µM; p=0.22) 

and had a slowing of reuptake that trended towards a significant change (t1/2 : control: 4.8 
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± 1.4 s; tacrine: 4.9 ± 2.4 s; p=0.095). It’s clear that in both male and female mice, inhibiting 

the intracellular metabolic enzyme results in no change in overall release of histamine but 

does cause histamine to remain in the synapse for a prolonged amount of time due to the 

concentration gradient created intracellularly. 

 

Figure 3.8: Inhibition of histidine decarboxylase lowers evoked histamine release 

while inhibiting histamine N-methyltransferase results in histamine remaining in 

the extracellular space. (A) the drug and mouse’s sex are listed. (B) a representative 

color plot for each grouping of animals is shown. The green bar represents the 2 s 

electrical stimulation. (C) a representative cyclic voltammogram from each cohort 

of animals. The CV is obtained from the vertical dashed line in each color plot in 

B. The blue shading covers the oxidation peak of histamine and the red shading 

highlights the oxidation serotonin. (D) concentration versus time traces for control 

(blue) and post-drug (green) evoked histamine. Traces are obtained from the 

horizontal dashed line ‘histamine’ in color plots in Bi-iv. 

 

 Due to the limited amount of FMH we had available, we combined the male and 

female responses into one grouping. We have shown that 60 min following inhibition of 
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histamine synthesis via FMH, a significant decrease in stimulated histamine was observed 

(Figure 3.8 Diii/iv) (n=2 male, 2 female; Ampmax: control: 8.59 ± 1.86 µM; post-FMH: 

5.83 ± 1.24 µM; p=0.038). There was no change in histamine clearance ((t1/2: control: 2.4 

± 0.2 s; FMH: 2.3 ± 0.4 s; p=0.82) 

3.4 Discussion 

3.4.1 Histamine FSCV in male and female mice 

The exclusion of females from pharmacological testing can have serious 

consequences for the health and safety of patients.31 Estrogen has been shown to be an 

important regulator in the ventromedial nucleus (VMN) of the hypothalamus.23, 32-33 H1R 

and estrogen receptor alpha (ERα) mRNA are co-expressed in histaminergic neurons23, 34 

and ERβ are expressed in the TMN.35 The localization of estrogen receptors on histamine 

projections highlights the potential role estrogen plays in regulating immune response. 

Indeed, estrogen and progesterone have been shown to mitigate the acute inflammatory 

response to lipopolysaccharide exposure.36-39 Additionally, inflammatory diseases and the 

susceptibility to the occurrence of diseases are more likely in post-menopausal women than 

pre-menopausal women and age matched males.40-41 

In this study we set out to investigate the machinery of the central histaminergic 

systems of male and female mice via response to various pharmaceutical challenges. Under 

control conditions, we did not find any differences in the release of hypothalamic histamine 

in male and female mice (Figure 3.1). This finding is in agreement with our previous work 

that compared hippocampal serotonin between sexes and found no statistical differences.42 

Our results differed from some literature reports that suggested histamine turnover and 

histamine cerebrospinal fluid concentration are higher in females43 or show lowered 
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histamine in females.22 FSCV is accompanied by a large aphysiological stimulation which 

releases a substantial amount of neurochemicals and is a fundamentally different type of 

measurement than other sampling techniques. In vivo measurements keep brain circuits 

intact and are often different than data obtained from ex vivo brain slices.44 Our data are 

unnormalized and highlight the high level of conservation in neurochemical regulatory 

mechanisms across individual mice. 

There is an intrinsic belief that there may be neurochemical differences between 

the different stages of the estrous cycle that has limited the use of females in research.45 

Due to histamine’s potential role in neuroinflammation, this belief may be even stronger; 

the extent of immune reactivity has been thought to depend on the different stages of the 

estrous cycle.46-47 Therefore, we compared evoked histamine in female mice during 

different stages of the estrous cycle and found that histamine was not significantly different 

throughout (Figure 3.2). This finding is not surprising given our prior experience with 

measuring neurotransmitters with FSCV where we have had to employ aggressive means 

to affect a significant but small change from homeostasis24, 42, such as high doses of SSRIs 

which correspond to profound behavioral alterations.48 Interestingly, we observed a double 

release event that occurred during the estrus stage of the female cycle. We have previously 

observed a similar phenomenon in the prefrontal cortex (pFC) regarding stimulated 

serotonin release.49 West et al determined that the occurrence of a single release or double 

release was dependent upon the specific region of the pFC the CFM was located. We 

applied that assumption to the posterior hypothalamus as well and found that double peaks 

were most likely to occur when the CFM was located anterior to our target coordinates. 

The ventromedial nucleus, periventricular nucleus, and dorsomedial nucleus are located in 
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this area and known to have a very high level of hormonal regulation.50-52 Neuronal mRNA 

sampled from VMN neurons showed colocalized expression of ERα and H1, H2, and H3 

receptors.23 Indeed the regulation of lordosis has been shown to be dependent on the 

interplay of histaminergic neurons and estrogens through histamine and estrogen 

receptors.23, 34, 53 

We conduct our histamine measurements in a specifically targeted region of the 

posterior hypothalamus where we are able to detect both evoked histamine and the resulting 

inhibition of serotonin. This has been shown to be an H3R mediated process by our lab and 

others.1, 24, 26-27 After confirming no statistical differences in evoked histamine between 

male and female mice and throughout the estrous cycle, we analyzed the level of serotonin 

inhibition resulting from histamine release in the same mice. Unsurprisingly, the overall 

amount of serotonin inhibition is not different between males and females, and the ratio of 

maximum release to peak inhibition does not differ (Figure 3.2). Throughout the estrous 

cycle serotonin did not vary significantly but a relative trend can be seen between histamine 

and serotonin amplitudes across cycle stages. As histamine exhibited two release profiles, 

we also compared the corresponding serotonin data of single and double events. A double 

peaked histamine release resulted in a larger amount of inhibition, but the difference was 

not significant (Figure 3.3). These results highlight the highly conserved nature of both 

the histamine and serotonin systems to maintain a homeostatic balance in the brain. 

3.4.2 Histamine receptor pharmacology in male and female mice 

After determining the evoked release of histamine was conserved between male 

and female mice, we wanted to explore how different receptor targeting compounds 

affected the release and reuptake of histamine. Antihistamines are compounds most 
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commonly prescribed for common allergies and target post-synaptic H1 or H2 receptors. 

First generation antihistamines, like diphenhydramine, readily cross the blood brain barrier 

and block the H1 receptor. Histamine is unable to activate the receptor to propagate 

signaling resulting in the common side effect of drowsiness. In both male and female mice, 

when H1 activation is inhibited, a slowing of histamine clearance is observed, presumably 

to allow histamine to remain in the synapse and activate the receptor after which it would 

then be reuptaken. Interestingly, these results point to a communication between H1 and 

membrane transport proteins.54 The results of zolantidine administration were unexpected 

given how H1 antagonism effected reuptake. Even as a brain penetrating potent H2 

antagonist, zolantidine did not cause any significant changes in the release and reuptake 

profile of histamine in male or female mice (Figure 3.4). This could be due to the 

difference between diphenhydramine being an inverse agonist and zolantidine being an 

antagonist.55 H2 receptors are widely expressed throughout the hypothalamus just as H1 

receptors but reuptake signaling mechanisms appear not to be linked to H2 activation and 

propagation. 

There is a substantial amount of literature documenting the neuromodulatory role 

and autoregulatory role of the H3 receptor.1, 5, 26-27 We previously used the H3R antagonist 

thioperamide when developing histamine FSCV24-25 and anticipated seeing robust changes 

in brain histamine when targeting H3R. However, when an equivalent dose of thioperamide 

was administered to female mice, a robust increase in histamine release did not occur. This 

contrasts with previous work that observed behavior following thioperamide treatment and 

found similar effects in and male female rats.56 After confirming there was consistently no 

change in female mice, we hypothesized that H3R expression in females possibly is lower 
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and administering a higher dose (50 mg kg-1) would test this notion. The higher dose did 

not result in a similar elevated release as in male mice and we ruled out receptor expression. 

We then tested whether immepip, an H3R agonist, would have a differential response in 

male and female mice. We found that H3R agonism resulted in an overall decrease in 

evoked histamine in both male and female mice without affecting the clearance slope 

(Figure 3.4). We hypothesized potential evolutionary regulatory mechanisms are present 

in female mice that do not allow histamine to elevate above a certain threshold. Ferretti et 

al. suggested that stressor-induced increases in histamine release may be lower in females 

than it is in males.22 Therefore, we tested this hypothesis by pretreating female mice with 

immepip to cause a significant decrease in evoked histamine. Following immepip, 

administration of thioperamide (20 mg kg-1) should now increase histamine to control or 

above control levels. In Figure 3.5, following a significant decrease in evoked histamine, 

thioperamide was only able to increase histamine back to near control levels, supporting 

our hypothesis that there are intrinsic mechanisms present in the female immune system 

that strictly regulate the levels of histamine in the brain. This increased control may have 

evolutionary underpinnings as it is often thought that female animals exhibit more 

homeostatic control and that female hormones, estrogens and progesterones, have 

neuroprotective functions.57-58 

Studies have shown that females experience an increased risk of developing 

inflammatory disorders later in life, particularly post-menopause.40-41 Therefore we wanted 

to test whether age or circulating hormone levels could influence the female response to 

thioperamide. There are three potential strategies we identified. 1) perform voltammetry 

experiments on mice that are undergoing or have undergone menopause (age 9-12+ 
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months).59 2) chemically or physically eliminate ovaries through ovotoxin administration 

or ovariectomy. 3) eliminate the influence of estrogens on the immune response through 

pretreatment with an aromatase inhibitor, letrozole. By pretreating female mice with 

letrozole and then administering thioperamide, we would be able to view how the female 

histaminergic system responds to H3R antagonism in the absence of estrogenic regulation. 

This is the focus of future experiments. 

3.4.3 Vesicular packaging of histamine in male and female mice 

Vesicular packaging is a crucial step for monoamine neurotransmission and 

disruptions can have downstream effects. Brain histamine can originate from neurons, glia, 

and mast cell degranulation.5 We targeted VMAT2 with two compounds, tetrabenazine and 

reserpine and examined their effect on histamine release. Tetrabenazine is selective for 

VMAT2, while reserpine has affinity for both VMAT1 and VMAT2. However, VMAT2 

is responsible for packaging in neurons, while VMAT1 is exclusively located in endocrine 

cells.60 Additionally, Erickson et al. demonstrated that histamine displayed a 30-fold higher 

affinity for VMAT2 over VMAT1 and reserpine had about 3x affinity for VMAT2 over 

VMAT1.61 Both reserpine and tetrabenazine caused significant decreases in overall evoked 

histamine in males and females, with females responding the strongest to tetrabenazine 

(Figure 3.6 Div). This could also be due to the initially high control signals obtained in 

that cohort of mice which makes the decrease appear more robust. We also confirmed that 

the majority of evoked histamine was neuronal or glia based and most likely not related to 

mast cell degranulation. This confirmed that histamine has similar prerelease mechanisms 

to other common neurotransmitters such as dopamine and serotonin and will better help 

understand the altered mechanisms during inflammatory states. 
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3.4.4 Influence of Enzyme Inhibition on Evoked Histamine 

We tested how inhibiting histamine synthesis might affect evocable histamine. 

Other groups have used FMH to successfully lower histamine and our data are in good 

agreement with those reports.62-64 Although the goal of this work was to highlight the male 

and female response to compounds separately, we combined the sexes’ responses in the 

case of FMH (20 mg kg-1) due to the limited amount of the compound available. Despite 

the inhibition of synthesis, there still is evocable histamine 60 min after ip injection, most 

likely due to the large aphysiological nature of our electrical stimulation. CNS histamine 

is metabolized exclusively by HA N-methyltransferase which is located intracellularly. By 

blocking the enzyme, a concentration gradient is created between the intra- and 

extracellular space and histamine spends a prolonged time in the synapse. The male and 

female mice responded similarly both having significant slowing of reuptake following 

tacrine (ip; 2 mg kg-1) (Figure 3.7 Diii, iv). Tacrine has additional affinity for blocking 

acetylcholine esterase which has been explored for cognitive boosting abilities in 

Alzheimer’s patients.65-66 Our data show that the metabolic pathway of histamine, 

including synthesizing and degrading enzymes, is highly conserved between male and 

female mice. 

What we are currently working towards is using this collection of novel 

simultaneous histamine and serotonin data to create a mathematical model of the synapse. 

We have made progress on the serotonin system49, 67 and have investigated parts of the 

histamine system24, 68 but have not fully elucidated the mechanisms regulating the synapse 

outside of standard H3R mediated inhibition.24 A model built using these data will capture 

how changes in histamine receptor functionality, vesicular packaging, and synthesis and 
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metabolism can affect the transmission of histamine and serotonin, a critical step in 

understanding the differences between healthy and inflamed immune systems. 

3.5 Conclusion 

 In this study, we investigated the pharmacological response of the male and female 

histamine system in the brain. We compared control evoked histamine between male and 

female mice and found no differences between them as well as no influence from the 

estrous cycle on histamine release. We targeted histamine receptors H1, H2, H3, and H4, 

vesicular packaging, synthesis, and metabolism. We found that the histaminergic system is 

highly conserved between the sexes but females appear to have a stronger regulatory 

control over increased histamine levels mediated through H3R. Our data highlight the 

importance of considering biological sex as a variable when evaluating pharmacology data 

and that simple extrapolation from male animal models to female should no longer occur. 
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CHAPTER 4 

INVESTIGATING HISTAMINE INACTIVATION USING THE MET172 

MOUSE MODEL1

 
1 Berger, SN. Hersey, M., Samaranayake, S., Best, J., Nijhout, HF., Reed, MC., Blakely, 

RD., Hashemi, P. Investigating histamine inactivation using the Met172 mouse model. In 

preparation. Euro. J. Neurosci. 
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4.0 Abstract 

Histamine is an important mediator of inflammation and immune response in the 

peripheral nervous system. Much less is known about histamine’s functions within the 

brain and central nervous system. Only one metabolic pathway is available for histamine 

within the brain through the intracellularly located histamine N-methyltransferase, despite 

there not being a dedicated transport protein for histamine identified. Stimulated histamine 

exhibits similar release and reuptake kinetics to that of common monoamine systems, thus, 

we investigated which transporters are responsible for the reuptake of histamine in the 

brain. We screened six agents to inhibit the serotonin transporter (SERT), norepinephrine 

transporter (NET), dopamine transporter (DAT), and organic cation transporter (OCT) and 

found compounds showing appreciable slowing of histamine clearance all have 

antidepressant activity. We focused on the role of SERT inhibition towards histamine 

clearance by utilizing a transgenic mouse model, the SERT Met172, which is insensitive 

to certain selective serotonin reuptake inhibitors (SSRI). The SSRI escitalopram 

significantly slowed histamine clearance in Met172 mice absent SERT antagonism. Our 

data rule out SERT’s contribution toward histamine reuptake and are in agreement with 

previous reports that propose OCT as the main transporter responsible for clearance. Our 

study highlighted key off-target mechanisms of antidepressants and the need to better 

understand the full spectrum of the mechanisms of these agents to improve their clinical 

efficacy. 

4.1 Introduction 

 Histamine is an important monoamine in the central nervous system (CNS) and 

dysregulation can lead to behavioral abnormalities.1-4 Therapies targeting the histaminergic 
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system are much less robust than other more common monoamine strategies and have 

failed to reach clinical relevance for neurological disorders.3, 5-6 There is a wide gap 

between understanding histamine’s roles in the CNS and developing successful therapies 

because histamine’s role and its interaction with other neurotransmitter systems remain 

understudied. Histamine controls monoamine release through H3 receptors on presynaptic 

terminals but understanding this regulation in the context of CNS disorders is unclear.7-12 

 In the CNS, histamine is exclusively metabolized to tele-methylhistamine through 

histamine N-methyltransferase.13 This metabolic route is only available for central 

histamine; peripheral histamine undergoes its own specific degradation pathway.14 There 

is evidence for partial histamine uptake into astrocytes15 and synaptosomes16, but a 

dedicated histamine transporter has not yet been identified. Previous work from the 

Hashemi lab reported that the reuptake curve of histamine, as measured by FSCV, was best 

fit with first order Michaelis-Menten kinetics17 similar to dopamine and serotonin that have 

dedicated membrane transporters.18-19 Therefore, we sought to establish which mechanisms 

might be responsible for this (suggestively) active reuptake of histamine in vivo. 

 Previous work from Lyn Daws’ lab has shown that the monoamine transporters 

(dopamine transporter (DAT), norepinephrine transporter (NET), serotonin transporter 

(SERT)) are not particularly selective for their dedicated substrate and regularly will 

reuptake one another’s substrates; a phenomenon she coined ‘promiscuous reuptake.’20 

Additionally, there is evidence that the non-specific membrane bound organic cation 

transporter (OCT2/3) and plasma membrane bound transporter (PMAT) play a significant 

role in histamine reuptake.21-22 
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In this work, we inhibited SERTs (with three separate agents), DATs, NETs, and 

OCTs and found that all agents, with the exception of the DAT inhibitor, slowed the 

reuptake of histamine. In agreement with previous findings, OCT inhibition resulted in the 

strongest inhibition of histamine reuptake.21-23 However, due to promiscuous reuptake, our 

results do not definitively identify which transporter is responsible for histamine uptake. 

To hone in better on the reuptake mechanism involved, we utilized a transgenic mouse 

model, the SERT Met172, generated by Randy Blakely at Florida Atlantic University. In 

Met172 mice, the SERT protein coding has a single amino acid substitution (isoleucine172 

 methionine172) that renders these mice insensitive to several SSRIs including 

escitalopram, which was included in the initial reuptake screening.24 Importantly, this 

substitution does not affect the function of the SERT.25 We found that administration of 

escitalopram to both Met172 and wild-type (WT) mice results in the inhibition of histamine 

reuptake, despite escitalopram not inhibiting the SERT, suggesting that SERTs do not play 

a major role in histamine reuptake. These results suggest that there exists an active reuptake 

mechanism for histamine, primarily through OCTs and negligible uptake through SERTs. 

This information is critical for improving the efficacy of CNS targeting pharmaceuticals. 

4.2 Materials and Methods 

Chemicals and Reagents 

 Escitalopram oxalate (Sigma Aldrich, St. Louis, MO, USA) at 10 mg kg-1 , GBR 

12909 (Sigma Aldrich) at 15 mg kg-1, desipramine hydrochloride (Sigma Aldrich) at 15 

mg kg-1, citalopram hydrobromide (Sigma Aldrich) at 5 mg kg-1, sertraline hydrochloride 

(Sigma Aldrich) at 10 mg kg-1, and decynium-22 (Sigma Aldrich) at 0.1 mg kg-1 were 

individually dissolved in sterile saline (0.9% NaCl solution, Hospira, Lake Forest, IL, 
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USA) and administered via intraperitoneal (ip) injection at a volume of 5 mL kg-1 body 

weight. Urethane (Sigma Aldrich, St. Louis, MO, USA) was dissolved in sterile saline at 

25% w/v and administered ip at 7 µL/g mouse body weight for surgical anesthesia. 

Electrode Fabrication 

 All electrodes are made in house. A single carbon fiber is aspirated into a 

borosilicate capillary (0.6 mm x 0.4 mm x 10 cm; OD x ID x L) (A-M Systems, Sequim 

WA, USA) and sealed under gravity and heat by a vertical pipette puller (Narishige, 

Amityville, NY, USA) to create two separate electrodes. The protruding fiber is then 

trimmed under light microscope to ~150 µm by scalpel. An electrical connection is forged 

with the fiber through a stainless-steel connecting wire and silver epoxy. Finally, a thin 

layer of Nafion (LQ-1105, Ion Power, New Castle, DE, USA) is electrodeposited onto the 

fiber surface at 1 V for 30 s; the coated fiber is dried for 10 min at 70 °C.26 

Data Collection and Analysis 

 Fast-scan cyclic voltammetry was performed on anesthetized mice using a Dagan 

potentiostat (Dagan Corp., Minneapolis, MN, USA) and custom built hardware interfaced 

with PCIe 6341 & PCI 6221 DAC/ADC cards (National Instruments, Austin, TX) and a 

Pine Research headstage (Pine Research Instruments, Durham, NC, USA). WCCV 3.06 

software (Knowmad Technologies LLC, Tucson, AZ, USA) was used to control the 

hardware and perform data analysis. The histamine waveform (-0.5 V to -0.7 V to +1.1 V 

to -0.5 V at 600 V s-1) was applied at 60 Hz for 10 min, then at 10 Hz for min prior to data 

collection. Data were collected at 10 Hz. Histamine was evoked via biphasic stimulation 

applied through a linear constant current stimulus isolator (NL800A Neurolog, Digitimer 
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North America LLC, Fort Lauderdale, FL, USA) with stimulations at 60 Hz, 360 µA, 2 ms 

in width, and 2 s in length.  

Data were collected and filtered on WCCV software (zero phase, Butterworth, 3 

kHz low pass filter). Four control evoked files, 10 min apart, were averaged for the control 

evoked histamine signal after which drug was administered and files were collected at 0 

min, 5 min, 10 min, and every 10 min thereafter until 120 min. Currents obtained were 

converted to concentrations through previously generated calibration factors for both 

histamine (2.825 µM nA-1) and serotonin (11 µM nA-1).17, 27 Mathematical modeling was 

via a previous model for histamine cells in MatLab.28 

Statistical Analyses 

 Average control response was generated from four current vs time traces per animal 

and averaged to create an overall group average. Exclusion criteria were based on outliers 

(via Grubbs test) and animals that did not survive the experimental paradigm. Standard 

error of the mean (SEM) was calculated using the average response of each animal (n = # 

animals). Significance between two points was determined by student’s t-test and taken as 

p < 0.05. All error bars represent the standard error of the mean (SEM). 

Animals and Surgical Procedure 

 Animal procedures and protocols were in accordance with the regulations of the 

Institutional Animal Care and Use Committee (IACUC) at the University of South 

Carolina, accredited through the Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC). Male and female SERT Met 172 knock in mice on 

a 129S6/S4 background were backcrossed with C57BL/6J mice and wild type mice (WT; 

C57 mice with 129 wildtype SERT gene (Ile172)) aged 6-20 weeks were used. Animals 
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were group housed with ad libitum access to food and water and were kept on a 12 h 

light/12 h dark cycle (lights on 0700/lights off 1900). 

 Stereotaxic surgery (David Kopf Instruments, Tujunga, CA, USA) followed 

induction of deep and sustained anesthesia from an intraperitoneal injection of urethane. 

Mouse body temperature was maintained using a thermal heating pad (Braintree Scientific, 

Braintree, MA, USA). All surgical coordinates were taken in reference to bregma.29 A 

Nafion coated CFM was lowered into the posterior hypothalamus (AP: -2.45, ML: 0.50, 

DV: -5.45 to -5.55) and a stimulating electrode (insulated stainless-steel, diameter: 0.2 mm, 

untwisted, Plastics One, Roanoke, VA, USA) was placed into the medial forebrain bundle 

(AP: -1.07, ML: +1.10, DV: -5.00).27 A pseudo-Ag/AgCl reference electrode, created by 

chloridizing a polished silver wire in HCl (15 s in 1 M HCl at 5 V), was placed in the 

contralateral hemisphere.  

4.3 Results 

 To screen potential monoamine transporters responsible for histamine reuptake, we 

tested the effects of monoamine transport inhibitors on histamine reuptake. In Figure 4.1, 

we measured evoked histamine (control, blue) and then pharmacologically inhibited the 

following transporter proteins (post-drug, green): dopamine transporters (DATs), serotonin 

transporters (SERTs), and norepinephrine transporters (NETs) with the following agents 

(ip; n = 5 each): GBR 12909 (DAT inhibitor, 15 mg kg-1), escitalopram (SERT inhibitor, 

10 mg kg-1), citalopram (SERT inhibitor, 5 mg kg-1), sertraline (SERT inhibitor, 10 mg kg-

1), and desipramine (NET inhibitor, 15 mg kg-1). We found that in all cases except for DAT 

inhibition, there was slowing of the rate of histamine reuptake that peaked at 60 min. The 

ability of both SERT and NET inhibitors to slow histamine clearance suggests a less 
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selective transporter might be involved. We therefore turned towards organic cation 

transporters (OCTs) and plasma membrane monoamine transporters (PMATs) which were 

inhibited with decynium-22 (OCT and PMAT inhibitor, 0.1 mg kg-1), providing evidence 

that this agent also slowed histamine clearance. 

 

Figure 4.1: Histamine reuptake is inhibited by monoamine transporter inhibitors. 

(A) Control hypothalamic histamine (blue) and 60 min post (i) GBR 12909 (ip, 

15 mg kg-1), (ii) escitalopram (10 mg kg-1), (iii) sertraline (10 mg kg-1), (iv) 

desipramine (15 mg kg-1), (v) citalopram (5 mg kg-1), and (vi) decynium-22 (0.1 

mg kg-1) (green; n=5, each) Stimulation marked by grey box at 5-7 s. Error (± 

standard error of the mean) is a shaded region around traces. Doses were reported 

in prior work to create behavioral shifts or neurochemical changes.26, 30-34 

 

Instead of only examining t1/2 here, we took a more sophisticated kinetic approach. 

We used a previously developed mathematical model for histamine dynamics28 to 

investigate how physiological parameters could be adjusted to best capture curves for 

escitalopram, citalopram, sertraline, and decynium-22. Model curves (dashed lines) are 

compared to experimental curves (solid lines) in Figure 4.2. In all four cases, we found 

that the major parameter change was a 50% reduction in the transport of extracellular 

histamine back into the cell, consistent with the inhibition of histamine reuptake. To further 
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narrow down which transporters are the largest contributor to histamine reuptake we used 

the SERT Met172 mouse. 

 

Figure 4.2: Modeled transporter data. Each panel shows the 

experimental curves (solid lines) and model predictions (dashed 

lines) both pre- and post-drug for the three different SSRIs and 

decynium-22. The main difference between the pre-drug and 

post-drug model curves was a 50% decrease in the reuptake of 

histamine from the extracellular space into the histamine 

varicosity. In the cases of escitalopram and decynium-22, the 

uptake into glial cells was partially blocked, which is consistent 

with the fact that the post-drug experimental curves are higher 

and flatter in those two cases. 

 

This mouse bears a single amino acid substitution (Ile172 is encoded in humans 

and mice and here are converted to Met172) that impairs the binding of high affinity 

antagonists, such as the SSRIs, without impacting serotonin uptake activity or in vivo 

serotonin clearance (Fig. 4.3A).24-25, 35-36 In Figure 4.3, we show the effects of escitalopram 

on changes in extracellular histamine and serotonin using this mouse. In Figure 4.3Bi and 

ii, escitalopram administration inhibited histamine clearance in Met172 mice (t1/2: control: 

3.65 ± 0.813 s; escitalopram: 5.35 ± 0.31 s; p=0.048) in a manner comparable to wild type 
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mice. These data effectively rule out a role for SERT in histamine clearance or in the 

actions of SSRIs to potentiate extracellular histamine levels but nonetheless show that 

SSRIs inhibit histamine reuptake. In Figure 4.3Ci and ii, we monitored the effects of 

escitalopram administration on extracellular hippocampal serotonin levels and confirmed 

previous findings that escitalopram is ineffective at blocking serotonin clearance in Met172 

mice.24 In wild type mice, escitalopram increased evoked hippocampal serotonin (Ampmax: 

29.19 ± 4.25 nM to 63.30 ± 5.33 nM; p= 0.008) and slowed extracellular clearance (t1/2: 

1.50 ± 0.07 s; 7.98 ± 1.67 s; p=0.03) after 50 min. 

 

Figure 4.3: Histamine reuptake is inhibited by monoamine transporter inhibitors. 

(A) Cartoon schematic depicting SSRIs inability to bind to SERTs and prevent 

serotonin reuptake in Met172 mouse. (B) Evoked hypothalamic histamine control 

(blue) and 50 min post escitalopram (green, 10 mg kg-1) in (i) Met172 and (ii) WT 

mice (n=4, each). (C) Evoked hippocampal serotonin control (grey) and 70+ min 

post escitalopram (red, 10 mg kg-1) in (i) Met172 (n=5) and (ii) WT mice (n=4). 

The grey and green bars represent the electrical stimulation from 5-7 s. Error (± 

standard error of the mean) is a shaded region around traces. 

 

4.4 Discussion 

 Commonly prescribed SSRIs, citalopram, escitalopram, and sertraline all inhibited 

the reuptake of histamine following electrical stimulation (Figure 4.1). In addition to their 
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high affinity for SERT, SSRIs do possess some off-target affinity for OCT.37-38 This is 

particularly important to highlight in terms of antidepressant therapies. Serotonin is thought 

to be decreased in the extracellular space in depressed patients and the goal of 

antidepressants is to return serotonin to a healthy level.39 In fact in the next chapter we 

provide unequivocal evidence for this lowered serotonin level. Studies have documented 

the comorbidity of inflammation and depression40-42 and elevated levels of 

proinflammatory cytokines has spawned a new hypothesis on the underlying causes of 

depression.43 However, pharmacological targeting of inflammatory biomarkers has yielded 

inconsistent results.44-46 Histamine is a peripheral marker of inflammation and in Chapter 

5 we show that histamine is also a maker of neuroinflammation. Given that during 

inflammation (i.e. depression) brain histamine is increased and this histamine is at least 

partially responsible for inhibiting serotonin levels, the compounds ostensibly prescribed 

to alleviate depressive symptoms may in fact have detrimental effects through keeping 

histamine present in the synapse and inhibiting the release of serotonin; antithetical to their 

prescribed role. Antidepressants are prescribed to a substantial percentage of the population 

and patients often take several weeks for symptom alleviation.47 We highlight the critical 

need for a comprehensive understanding of the molecular mechanisms of antidepressants 

to improve clinical efficacy. 

A histamine specific transporter has not yet been identified despite histamine 

having reuptake kinetics similar to other rapidly cleared monoamines and histamine N-

methyltransferase being located intracellularly.13, 18-19 Indeed, in Samaranayake et al. 

where we first described FSCV dual histamine-serotonin measurement, when 

mathematically describing the responses, the models necessitated an active reuptake term 
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to fit the histamine curves.17 Thus, we pharmacologically tested whether inhibition of other 

monoamine transporters affected histamine reuptake. We inhibited SERTs (with three 

different agents), DATs, and NETs and found that SERT and NET inhibition slowed the 

clearance of histamine. Next we turned towards OCTs and PMATs. OCTs and PMATs are 

low affinity transporters with the notable ability to non-selectively transport biogenic 

amines.48-49 Gasser and colleagues recently showed that OCT and PMAT reuptake 

histamine (and other monoamines) with varying affinities.22 Our results are in agreement 

and show that OCT/PMAT inhibition via decynium-22 slowed the clearance of histamine 

in vivo. However, these results do not definitively identify which transporter is responsible 

for histamine reuptake because the different agents we administered have affinity for the 

different monoamine transporters.20 Importantly, we show that histamine clearance was 

inhibited by several compounds that all possess antidepressant activity in Figure 4.1 

(sertraline, escitalopram, citalopram, desipramine, and decynium-22).50-51 

To narrow down a histamine reuptake transporter, we utilized a transgenic mouse 

model, the SERT Met172. SERT Met172 mice are a genetic knock-in strain which bear a 

single amino acid substitution that renders their SERT insensitive to several SSRIs.24, 35-36 

Importantly, this model allows the SERT to remain intact and functioning, which is 

arguably more physiologically relevant rather than removing SERT function entirely as in 

a SERT knockout mouse.35, 52 Using this mouse, we observed that escitalopram no longer 

antagonized serotonin reuptake (Figure 4.3C), yet still slowed histamine clearance, 

strongly suggesting that a transporter other than SERT which escitalopram has affinity for53 

dictates escitalopram-mediated clearance. Moreover, a NET-specific tricyclic 

antidepressant (desipramine) with little SERT activity also delayed histamine clearance. 
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Given the ability of the OCT/PMAT inhibitor decynium-22 to inhibit evoked histamine 

clearance, it seems likely that SERT-independent effects of SSRIs and the tricyclic 

antidepressant may be mediated by these transporters. This is a reasonable assumption 

given that OCTs are located most densely on glial cells that mediate the brain’s immune 

reactions.54-55 

It is important to remember the greater implications of this finding. During 

depression and chronic stress, elevated levels of histamine are contributing to decreased 

serotonin levels through H3 modulation. Antidepressants are prescribed with the intention 

to raise serotonin in the extracellular space and increase receptor activation. However, 

these very prescriptions may result in sustained histamine presence in the synapse 

decreasing overall serotonin levels. Future work should be aimed at mitigating 

antidepressant affinity for OCT and aimed at designing therapeutic targets with 

neuromodulation in mind. 

4.5 Conclusion 

 Histamine is an understudied neuromodulator, but its reuptake mechanism is not 

fully elucidated. We pharmacologically inhibited serotonin transporters (SERT), dopamine 

transporters (DAT), norepinephrine transporters (NET), organic cation transporters (OCT), 

and plasma membrane monoamine transporters (PMAT) and found all agents that inhibited 

histamine clearance exhibited antidepressant effects. We then used the transgenic mouse 

model SERT Met172 to rule out SERT’s contribution to histamine reuptake in the brain. 

Our data are in agreement with the conclusion that high efficiency, low affinity OCT are 

responsible for the bulk of histamine reuptake. PMATs still remain to be studied more 

extensively, but currently the only selective PMAT inhibitors are HIV protease inhibitors 
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and present their own confounding factors. Antidepressants target the different monoamine 

transporters to block reuptake in an effort to extend the amount of time that molecules 

spend in the synapse. However, we have shown evidence that common SSRIs may have 

off target effects on a chemical level that are opposite to their intended purpose. 
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CHAPTER 5 

HISTAMINE’S ROLES IN MEDIATING SEROTONIN DURING 

NEUROINFLAMMATION1

 
1 Berger, SN., Hersey, M., Buchanan, AM., Ou, Y., Mena, S., Tavakoli, N., Reagan, L., 

Hashemi, P. Histamine’s roles in mediating serotonin during neuroinflammation. In 

preparation. J. Neurosci. Res. 
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5.0 Abstract 

Depression is the leading cause of disability worldwide and current treatments are 

variable with even the most efficacious selective serotonin reuptake inhibitors (SSRIs) only 

benefitting ~30% of patients. The low efficacy is in part due to serotonin’s role in 

depression remaining undefined. New research highlights a potential role for inflammation 

in the low efficacy of antidepressants, further stressing the need to understand the complex 

relationship between the brain, serotonin, antidepressants, and inflammation. Here we used 

a chronic mild stress (CMS) paradigm, that is associated with depression phenotypes and 

neuroinflammation. We analyzed the effect of CMS on the neurotransmission of histamine 

and serotonin in the hypothalamus and hippocampus, respectively, with fast 

electrochemical techniques. We found that CMS increased evoked histamine compared to 

age matched control mice and decreased the extracellular levels of hippocampal serotonin. 

Additionally, CMS induced inflammation impaired the ability of escitalopram, an SSRI, to 

raise serotonin levels compared to control. Finally, we co-administered escitalopram with 

a histamine synthesis inhibitor and found that alleviating histamine’s influence on 

serotonin allows for escitalopram to increase serotonin in a similar fashion to non-stressed 

control mice. These results suggest that histamine plays a crucial role in modulating 

serotonin during inflammation and provides a novel therapeutic target as well as insight 

into the neurochemical basis of depression. 

5.1 Introduction 

 Depression is a debilitating disease that presents itself through a myriad of 

symptoms and severities patient to patient.1-3 Rates of depression among the global 

population have been steadily growing in recent decades, one reason being a decreased 
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stigma surrounding mental health diagnoses. Health professionals warned about the 

looming global mental health crisis associated with extensive isolation and feelings of 

hopelessness during the unprecedented worldwide COVID-19.4-5 Despite increased 

prevalence and reduced stigma around depression, treatments have remained stagnant with 

only a few new therapies introduced in the last two decades.6 

 Traditional antidepressants focus on three main monoamine neurotransmitters that 

underpin the monoamine hypothesis of depression – dopamine, norepinephrine, and 

serotonin.7 The theory hypothesizes that one, two, or all of these monoamines are 

dysregulated, and their concentrations are lowered in the synaptic area.8 The majority of 

antidepressants have focused on the serotonergic system, specifically aiming to block the 

reuptake of serotonin through the serotonin transporter (SERT). This class of compounds, 

selective serotonin reuptake inhibitors, has undergone thorough investigation since the 

1970s balancing high affinity for SERT and minimal off-target effects.9 Despite decades 

of research, treatments remain ineffective, with only ~30% of patients responding to their 

first or second prescribed antidepressants and those who do respond typically experience 

several weeks of delayed onset.10 Ultimately, treatment shortcomings stem from the fact 

that there has not been a clearly identified chemical marker for depression that can be 

‘corrected’ to restore a patient’s heath. 

 There is growing evidence that depression and inflammation, specifically 

neuroinflammation, are comorbid but it is unclear which precipitates the other.11-12 

Neuroinflammation is the CNS analogue of peripheral inflammation and is evidenced by 

similar biochemical markers.13-14 What remains unclear during cases of 

neuroinflammation, is how histamine in the brain is reacting to the immune processes. 
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Knowing that histamine is able to negatively modulate serotonin release in the brain via 

H3Rs15 and common SSRIs inhibit the reuptake of histamine in the brain (Chapter 4), it is 

critical to understand how histamine behaves in the brain during inflammation. 

Interestingly, a strong link between inflammatory markers in serum and SSRI resistance 

has been identified.16-17 Additionally, antidepressant treatment has been shown to reduce 

inflammation and recent evidence suggests inhibiting proinflammatory cytokines can 

alleviate depressive symptoms18-21 and increase SSRI efficacy.22-23 Studies have suggested 

an important role for brain histamine in antidepressant treatment, therefore, we explored 

this connection between histamine and serotonin during neuroinflammation.24-25 

 In this study, we utilize an established behavior paradigm (unpredictable chronic 

mild stress; CMS) that is known to induce depression-like phenotypes and inflammation 

in mice. 26-29 While we did not find strong significance in the depression phenotypes or 

inflammation markers in these mice, using voltammetry we found that histamine was 

significantly elevated. As such, CMS-treated mice displayed a decreased level of 

extracellular serotonin and an impaired response to SSRI when compared to non-stressed 

controls. We have shown that the CMS-treated mice response to SSRI can be restored when 

histamine’s inhibitory action was eliminated by co-administering a histamine synthesis 

blocker with the SSRI. These results highlight the importance of the histamine system and 

inflammation in the underlying mechanisms of depression. 

5.2 Materials and Methods 

Chemicals and Reagents 

Escitalopram oxalate (10 mg kg-1) (Sigma Aldrich, St. Louis, MO, USA) and α-

fluoromethylhistidine dihydrochloride (20 mg kg-1) (Toronto Research Chemicals Inc., 
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Toronoto, CAN) were individually dissolved in sterile saline (0.9% NaCl solution, 

Hospira, Mountainside Medical Equipment, Marcy, NY, USA) and administered via 

intraperitoneal (ip) injection at a volume of 5 mL kg-1 body weight. Urethane (Sigma 

Aldrich, St. Louis, MO, USA) was dissolved in sterile saline at 25% w/v and administered 

at 7 µL/g mouse body weight for surgical anesthesia. 

Calibration solutions were prepared by dissolving serotonin hydrochloride (Sigma 

Aldrich, St. Louis, MO, USA) in Tris buffer to produce solution concentration of 10, 25, 

50, and 100 nM. Tris buffer consisted of 15 mM H2NC(CH2OH)2 HCl, 140 mM NaCl, 3.25 

mM KCl, 1.2 mM CaCl2, 1.25 mM NaH2PO4 H2O, 1.2 mM MgCl2, and 2.0 mM Na2SO4 

(Sigma Aldrich, St. Louis, MO, USA) in deionized water and pH adjusted to 7.4. 

Electrode Fabrication 

 All electrodes are made in house. A single carbon fiber is aspirated into a 

borosilicate capillary (0.6 mm x 0.4 mm x 10 cm; OD x ID x L) (A-M Systems, Sequim 

WA, USA) and sealed under gravity and heat by a vertical pipette puller (Narishige, 

Amityville, NY, USA) to create two separate electrodes. The protruding fiber is then 

trimmed under light microscope to ~150 µm by scalpel. An electrical connection is forged 

with the fiber through a stainless-steel connecting wire and silver epoxy. Finally, a thin 

layer of Nafion (LQ-1105, Ion Power, New Castle, DE, USA) is electrodeposited onto the 

fiber surface at 1 V for 30 s; the coated fiber is dried for 10 min at 70 °C.15, 30 

Data Collection and Analysis 

 Fast-scan cyclic voltammetry and fast-scan controlled adsorption voltammetry 

(FSCAV)  were performed on anesthetized mice using a Dagan potentiostat (Dagan Corp., 

Minneapolis, MN, USA) and custom built hardware interfaced with PCIe 6341 & PCI 6221 
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DAC/ADC cards (National Instruments, Austin, TX) and a Pine Research headstage (Pine 

Research Instruments, Durham, NC, USA). WCCV 3.06 software (Knowmad 

Technologies LLC, Tucson, AZ, USA) was used to control the hardware and perform data 

analysis. For FSCV collection, the “Jackson” serotonin waveform31 was applied at 60 Hz 

for 10 min, then at 10 Hz for 10 min prior to data collection or the histamine waveform (-

0.5 V to -0.7 V to +1.1 V to -0.5 V at 600 V s-1) was applied at 60 Hz for 10 min, then at 

10 Hz for min prior to data collection. Data were collected at 10 Hz. Neurotransmitter 

release was evoked via biphasic stimulation applied through a linear constant current 

stimulus isolator (NL800A Neurolog, Digitimer North America LLC, Fort Lauderdale, FL, 

USA) with stimulations at 60 Hz, 360 µA, 2 ms in width, and 2 s in length. 

Data were collected and filtered on WCCV software (zero phase, Butterworth, 3 

kHz low pass filter for histamine; 5kHz low pass filter for serotonin). For FSCV analysis, 

the cyclic voltammogram (CV) was used to identify histamine and serotonin and the 

current vs. time (IT) was extracted to visualize release and reuptake. Currents obtained 

were converted to concentrations through previously generated calibration factors for both 

histamine (2.825 µM nA-1) and serotonin (11 µM nA-1)15, 32 and hippocampal serotonin 

(49.5 ± 10.2 nA/µM).30 

For basal experiments, control evoked files were collected followed by the 

methodology being switched to FSCAV. FSCAV was performed using a CMOS precision 

analog switch, ADG419 (Analog Devices). For FSCAV collection, the serotonin waveform 

was applied at 100 Hz for 2 s followed by a period of controlled adsorption where the 

potential was held at 0.2 V for 10 s and then the serotonin waveform was reapplied at 100 

Hz, as described in Abdalla et al.33 Thirty files (at one file min-1) were collected as control 
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files. Following control files, an ip injection of saline was administered and 30 more files 

of FSCAV were collected. Animals were then administered escitalopram (10 mg kg-1; ip) 

and 60 files post-escitalopram were collected. The system was then switched back to 

traditional FSCV and four post-basal stimulation files were collected. Electrodes were 

removed from the animal and underwent post-calibration in which 10 files were collected 

with the electrode in solutions of 10, 25, 50, and 100 nM serotonin. 

For FSCV data, four IT curves were averaged for each animal to establish a control 

signal. The average for each individual animal was then averaged throughout the group to 

create an overall group average. 

For FSCAV data, the first characteristic CV following waveform reapplication was 

selected for quantification, and the peak occurring approximately between 0.4 and 0.85 V 

was integrated to determine the charge (pC). Post-calibrations of each electrode, plotting 

charge (pC) vs. [serotonin] (nM), were used to determine basal concentration. 

Statistical Analyses 

 Exclusion criteria were based on outliers (via Grubbs test) and animals that did not 

survive the experimental paradigm. To determine the t1/2, a code was custom written in 

Excel to fit the reuptake component of the curve and calculate the time taken to reach half 

the maximum amplitude. Standard error of the mean (SEM) was calculated using the 

average response of each animal (n = # animals). Significance between two points was 

determined by 2-tailed paired t-test and taken as p < 0.05. Two-way ANOVA was used to 

determine significance between control max amplitude and the time course of drug max 

amplitude. All error bars represent the standard error of the mean (SEM). Area under the 

curve (AUC) was measured using Simpson’s rule of histamine release from time 0 s to the 
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first intercept of the x axis; in the case of two peaks, only the first peak was analyzed. The 

Shapiro-Wilk test was used to determine AUC data distribution. The Wilcoxon rank-sum 

test was applied between control and CMS. Significance was taken as p<0.05. 

Animals and Surgical Procedure 

 Animal procedures and protocols were in accordance with the regulations of the 

Institutional Animal Care and Use Committee (IACUC) at the University of South 

Carolina, accredited through the Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC). Male and female C57BL/6J mice (Jackson 

Laboratory, Bar Harbor, ME, USA) arrived at 6-7 weeks old group housed, with ad libitum 

access to food and water, and were kept on a 12 h light/12 h dark cycle (lights off 0700; 

light on 1900). An unpredictable chronic mild stress (CMS) paradigm was conducted over 

a 16-week period and based on previously documented models.34-37 Two to three mild 

stressors were performed a day. Stressors included: food or water deprivation, 

confinement, cage tilt, soiled cage, light during dark cycle, bedding removal, novel object, 

and handling. All stressors were stopped during behavior testing and 12 h leading up to 

neurochemical studies. 

 Stereotaxic surgery (David Kopf Instruments, Tujunga, CA, USA) followed 

induction of deep and sustained anesthesia from an ip injection of urethane. Mouse body 

temperature was maintained using a thermal heating pad (Braintree Scientific, Braintree, 

MA, USA). All surgical coordinates were taken in reference to bregma.38 For serotonin 

analysis, a Nafion coated CFM was lowered into the CA2 region of the hippocampus (AP: 

-2.91, ML: +3.35, DV: -2.5 to -3.0) and a stimulating electrode (insulated stainless-steel, 

diameter: 0.2 mm, untwisted, Plastics One, Roanoke, VA, USA) was placed into the medial 
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forebrain bundle (AP: -1.58, ML: +1.00, DV: -4.8). For histamine analysis, a Nafion coated 

CFM was lowered into the posterior hypothalamus (AP: -2.45, ML: 0.50, DV: -5.45 to -

5.55) and a stimulating electrode was placed into the medial forebrain bundle (AP: -1.07, 

ML: +1.10, DV: -5.00). A pseudo-Ag/AgCl reference electrode, created by chloridizing a 

polished silver wire in HCl (15 s in 1 M HCl at 5 V), was placed in the contralateral 

hemisphere.  

Behavioral Analyses 

Following the CMS behavioral paradigm, mice underwent behavioral testing for 

anxiety- and depressive-like phenotypes. Sucrose preference test (SPT) was conducted as 

previously described.39 Briefly, mice were given access to water and 1% sucrose solution 

for 24 h and the difference in consumption amounts was recorded. Elevated zero maze 

(EZM) was conducted as previously described.40 Each mouse was placed into the closed 

arm of the apparatus (Maze Engineers, Boston, MA, USA) and allowed to explore for 5 

min. Time spent in the closed arm was measured as an indicator of anxiety-like behavior. 

Tail suspension test (TST) was completed as previously described.41 Mice were attached 

via tape to a supported metal rod and a small plastic, flexible tube was placed on the tail to 

limit climbing behavior within the apparatus (Maze Engineers, Boston, MA, USA) for the 

duration of the 6 min test. Percent immobility was measured in the first two min (as pre-

test) and the remaining 4 min (test period) as an indicator of depressive-like behavior. 

Forced swim test (FST) was conducted as previously described.42 Briefly, mice were 

individually placed in 4 L beakers filled with ~30 °C water for 5 min and the latency to 

float and duration of floating (immobility) was recorded. 
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Biochemical Analyses 

BioPlex immunoassays (Bio-Rad Laboratories, Hercules, CA, USA) were used according 

to manufacturer instructions to analyze cytokines in plasma at sacrifice. 

5.3 Results 

5.3.1 Behavioral and cytokine analyses 

Following the stress paradigm, we analyzed behavioral tests for anxiety (elevated 

zero maze) and depression through SPT, TST and FST. For the SPT (Figure 5.1B), 

significantly less preference was only found in male mice after 12 h (control: 88.31 ± 

0.92%; CMS: 83.33 ± 1.42%; p= 0.013). For the EZM (Figure 5.1C), CMS-treated mice 

spent significantly more time in the closed arm of the maze than control mice (249.83 ± 

2.76 s, 230.09 ± 3.79 s respectively; p < 0.001). For the FST, only male mice showed less 

active behaviors after CMS (Con: 41.36 ± 8.05%; CMS: 66.14 ± 9.13%; p=0.035) (Figure 

5.1D). There were no significant differences between control and CMS mice in the TST 

despite a clear trend (65.64 ± 4.17 %, 70.50 ± 3.57 % respectively; p = 0.38) (Figure 5.1E). 

While there is some significance in this data, in our hands CMS does not robustly (i.e. in 

every animal) create depression-like phenotypes. 

Similarly, we performed plasma cytokines analyses from these mice and found that 

differences were weakly significant. There was no difference in peripheral cytokine 

concentration between these two groups, however, when the ratios of proinflammatory 

cytokines to anti-inflammatory cytokines were compared, for example with TNF- / IL-4 

in females, significance was apparent (control: 15.18 ± 0.93 pg/mL; CMS: 19.30 ± 1.30 

pg/mL; p = 0.016) (Figure 5.1F). CMS-treated mice also trended towards an increase in 

IL-6/IL-4 ratios (p =0.21 and 0.24 in male and female mice) (Figure 5.1F). Overall, 
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behavioral and plasma cytokine analysis yielded mild significance for the 16-week chronic 

stress paradigm. 

 
 

Figure 5.1: Behavioral and inflammatory changes following CMS 

treatment. (A) A schematic is shown for the 16-week CMS 

paradigm used as well as behavior, neurochemical, and 

inflammation studies that followed. (B) Average sucrose preference 

(sucrose water consumed - water consumed / total water consumed) 

in the SPT for non-stress control (bue; n=40) and CMS (gray; n=39) 

mice (t-test, p <0.001). (C) Average time spent in the closed sections 

of the EZM is shown for control (blue; n=37) and CMS (gray; n=36) 

mice. (D) Average percentage of time immobile in the FST for male 

(blue) and female (light blue) control mice and male (gray) and 

female (light gray) CMS mice. (E) Average percentage of time 
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immobile in the TST is shown for control (blue) and CMS (gray) 

mice. (F) Analysis of cytokine ratios (TNF-/IL-4 and IL-6/IL4 

respectively). Significance was defined as p < 0.05 in a student’s t-

test. 
 

5.3.2 Hippocampal serotonin is decreased in CMS mice 

In these mice we next measured evoked and ambient serotonin with fast-scan cyclic 

voltammetry (FSCV) and fast-scan controlled adsorption voltammetry (FSCAV). We 

developed these tools in our lab for minimally invasive, highly reproducible serotonin 

measures on the neurotransmission temporal and spatial scale. There was no difference in 

evoked serotonin in the hippocampus between control and CMS mice (Ampmax: Control: 

19.02 ± 3.2 nM; CMS: 19.29 ± 3.71 nM; p = 0.804) or reuptake of serotonin (t1/2: Control: 

2.31 ± 0.27 s; CMS: 2.29 ± 0.26 s; p = 0.953) (Figure 2A-E). However, using FSCAV we 

were able to show a robust difference in basal or ambient serotonin. In this region (Figure 

2F-H), every single mouse that underwent the chronic stress paradigm had decreased 

ambient serotonin (Cmax: control: 63.17 ± 2.67 nM, CMS: 46.70 ± 0.72 nM; t-test, p <0.001), 

despite weakly correlated behavioral and cytokine analysis. 

5.3.3 Hypothalamic histamine is increased in CMS mice 

Fast-scan cyclic voltammetry analysis of histamine was performed in the posterior 

hypothalamus of the mice. In Figure 5.3A, a representative FSCV color plot is shown. The 

[HA] vs time and [5HT] vs time is shown in Figure 5.3B for non-stressed control (blue) 

and CMS-treated mice (green). There was no apparent change in the reuptake of histamine 

between CMS and non-stressed control mice (t1/2: control: 2.5 ± 0.7 s; CMS: 3.2 ± 0.6 s; 

p=0.23) The peak inhibition of serotonin following histamine release was increased in 
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CMS mice, however this effect was not significant (Ampmax: control: 24.02 ± 6.30 nM; 

CMS: 26.34 ± 4.32 nM; p=0.77). 

 

 

Figure 5.2: Decreased extracellular serotonin predicts stress. (A,C) 

Example 5HT color plots from control and CMS mice respectively. (B,D) 

Example 5HT cyclic voltammograms from control and CMS mice 

respectively. (E) Evoked hippocampal serotonin in control (blue) and 

CMS (gray) mice. (F) An example of a basal serotonin color plot. (G) An 

example of a basal serotonin cyclic voltammogram from which basal 

serotonin was calculated using the equation shown (τ = Surface 

Concentration, Q = Charge, n = Charge on the Molecule, F = Faraday 

Constant, and A = Surface Area). (H) Average basal serotonin in control 

(blue) and CMS (gray) mice is shown in a bar graph and individual 

animals are denoted by circles. Error is shown as SEM and a student’s t-

test was performed and significance defined as p < 0.05 
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Figure 5.3 Chronic mild stress treatment elevates histamine. (A) 

Representative color plot of evoked histamine and serotonin inhibition with 

an inset cyclic voltammogram confirming the electrochemical identities of 

histamine and serotonin. The blue bar represents electrical stimulation from 

5 - 7 s. (B) Average CMS (green, n=5) and non-stressed control (blue, n=6) 

evoked [histamine] and [serotonin] inhibition vs time profiles. Error (± 

standard error of the mean) is shown as the shaded region around traces. 

 

 We hypothesized that the serotonin levels in CMS mice are low due to elevated 

histamine in the hypothalamus Figure 5.3B, thus, we tested this notion and found in CMS 

mice there is a non-significant increase in histamine release (control: 4.28 ± 0.51 M; 

CMS: 5.64 ± 0.66 M; p=0.13) and a significant increase in area under the curve of 

histamine release (AUC control: 14.51 ± 2.35 µM•s; CMS: 25.50 ± 2.80 µM•s; Wilcoxon 

rank-sum test, p=0.02) (Figure C1). 

The increased histamine explains the decreased ambient serotonin seen in Figure 

5.2H. Therefore, we designed an experiment in which three groups of animals would 

receive escitalopram under different treatments: non-stressed control (escitalopram; 10 mg 

kg-1), CMS mice (escitalopram; 10 mg kg-1), and CMS mice co-administered escitalopram 

(10 mg kg-1) and a histamine synthesis inhibitor (FMH; 20 mg kg-1) (Figure 5.4). 
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Figure 5.4: Dual targeting of histamine and serotonin effects on 

hippocampal serotonin in CMS-treated mice. Basal serotonin measurements 

are shown for control mice given saline and then escitalopram (ip, 10 mg 

kg-1, n=5, blue), CMS-treated mice given saline and then escitalopram (ip, 

10 mg kg-1, n=5, grey), and CMS-treated mice given saline and then 

escitalopram (ip, 10 mg kg-1) and FMH (ip, 20 mg kg-1, purple, n=5). 

 

5.4 Discussion 

5.4.1 Brain Serotonin is Lower in Response to Chronic Inflammation 

 The CMS treatment protocol is a model to induce depression-like phenotypes in 

rodents that also results in associated neuroinflammation.26-29 Therefore, we used this 

model to induce chronic inflammation in a cohort of mice to study the effects on brain 

serotonin and histamine levels. While we found weak significance between this paradigm 

and depression-like phenotypes and inflammation, using FSCV and FSCAV, developed in 

our lab, to measure serotonin we found that CMS-treated mice exhibited a significantly 

lower amount of ambient serotonin in the brain compared to control (Figure 5.4). This 

phenomenon has been hypothesized and studied for some time.43-44 CMS has been said to 

decrease brain serotonin levels45-47, a finding that has also been contradicted48 while acute 

stress has been shown to increase serotonin.49-50 Importantly, CMS has also been associated 
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with chronic inflammation.27, 51 Thus, agreement had not been reached in the community 

about whether serotonin levels were actually lower during depression. Here for the first 

time, we show that stress robustly decreases serotonin. Knowing histamine’s modulatory 

control of serotonin, we next aimed to determine if histamine is altered in CMS-treated 

mice. 

5.4.2 Brain Histamine is Elevated during CMS Induced Neuroinflammation 

Behaviorally depressed mice had higher levels of evoked histamine as analyzed by 

fast scan cyclic voltammetry (Figure 5.3/C1). We contribute our small sample size to 

unfortunate animal loss as behaviorally depressed mice are known to respond poorly to 

anesthesia.52-54 Histamine has been shown to be a crucial signaling molecule for the 

immune system55-56 and the connection between depression and altered immune system 

functionality has been explored.57 Activated microglia and mast cells can regulate local 

levels of histamine, which directly respond to immune reactions within the brain.58-62 

Additionally, microglia and mast cell activation is thought to be linked to the induction of 

anxiety and stress behaviors through inflammatory signaling.63-65 The role of histamine in 

inflammatory communication in the brain has not yet been definitively determined, but 

regulation appears to be complimentary in that histamine receptors can also affect cell 

recruitment66-67 Here, we have shown that CMS-induced neuroinflammation increased 

histamine and decreased serotonin levels in the brain. Previously, we showed that this 

inverse modulation of histamine on serotonin was due to activation of H3 receptors present 

on presynaptic serotonin terminals.15 We next sought to investigate the implication of this 

relationship further. 
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5.4.3 Dual pharmacological targeting of serotonin and histamine restores SSRI efficacy 

during chronic inflammation 

Our measurements of serotonin and histamine are in two distinctly different brain 

regions, the hippocampus and the hypothalamus. We hypothesized that elevated 

inflammation (thus elevated basal histamine levels) could mediate the lower extracellular 

levels of serotonin observed in the hippocampus. We intended to remove the inhibitory 

effect of histamine on H3 heteroreceptors on serotonin terminals to observe whether we 

could return serotonin levels to pre-stress levels. Employing an antihistamine is enticing 

but as covered in Chapter 3, those agents target post-synaptic H1 and H2, not H3 receptors, 

and actually would result in sustained extracellular histamine. In fact, H3R are not the ideal 

pharmacological targets either as administering an agonist or antagonist would have 

confounding effects (immepip or thioperamide; Chapter 3). Thus, we chose to globally 

lower histamine levels by inhibiting the overall synthesis of histamine. We accomplish this 

through α-fluoromethylhistidine (FMH), a suicide inhibitor of histidine decarboxylase 

(sole enzymatic route of histamine synthesis). Studies have shown this compound 

dramatically decreased both peripheral and central histamine.68-70 Co-administration of 

escitalopram and FMH induced robust increases in ambient serotonin (Figure 5.4). We 

postulated that dual targeting of histamine and serotonin could increase extracellular 

serotonin and ameliorate the impaired SSRI-induced increases in serotonin seen in CMS-

treated mice. In CMS-treated mice, we observed ambient serotonin increased faster and to 

a level comparable to control mice receiving escitalopram. Importantly, we suggest that 

histamine may play a crucial role in serotonin dynamics as well as response to SSRI in 

inflammatory states. 
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5.5 Conclusion 

 Depression and inflammation are two inextricably linked phenomena that cause 

debilitating effects in patients. We used an unpredictable chronic mild stress paradigm to 

induce a depression-like phenotype and associated neuroinflammation in mice. We have 

shown that serotonin levels are functionally lowered in chronically stressed mice and 

confirm the notion that brain histamine levels are elevated during neuroinflammatory states 

using in vivo fast-scan cyclic voltammetry. We postulated that elevated histamine is at least 

partially responsible for decreased serotonin as we were able to restore escitalopram’s 

ability to increase hippocampal serotonin in the absence of histaminergic control. Our 

results highlight the importance of considering the histaminergic system and the role it 

plays at the intersection of depression and inflammation. 
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CHAPTER 6 

AN IN VIVO ANALYSIS OF KETAMINE’S HISTAMINERGIC 

MODULATION OF SEROTONIN IN THE POSTERIOR 

HYPOTHALAMUS1

 
1 Berger, SN., Witt, CE., Baumberger Altirriba, BM., Hashemi, P. An in vivo analysis of 

ketamine’s histaminergic modulation of serotonin in the posterior hypothalamus. In 

preparation. Neurosci. Lett. 
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6.0 Abstract 

Ketamine is a dissociative anesthetic that has recently been highlighted for its 

potential role as a rapid acting antidepressant in patients with major depressive and 

treatment resistant depression. Despite the clinical rush to approve a treatment paradigm 

utilizing ketamine, a large portion of ketamine’s antidepressant effects remain unknown. 

We used fast voltammetric methods to investigate ketamine’s effects on monoamine 

transmission in the hypothalamus and hippocampus of mice. We found ketamine caused a 

robust decrease in electrically evoked histamine in the hypothalamus and increased 

ambient serotonin levels in the hippocampus. We attributed these results to activation of 

metabotropic glutamate receptors 2 & 3 and glutamatergic modulation of monoamine 

transmission. Our data reveal new biochemical impacts of ketamine on the brain and will 

aid in understanding ketamine’s antidepressant mechanisms. 

6.1 Introduction 

Ketamine is an important anesthetic, used primarily in veterinary medicine and 

recognized as an essential medicine by the World Health Organization.1 Ketamine has 

recently been proposed as a new sensational treatment for major depressive disorder 

despite its storied history as a recreational drug of abuse.2 While the clinical data on 

ketamine treatment seems to show net positive effects on patients’ outcomes, benefits have 

variable duration and require repeated injections.3-9 Exactly how ketamine exerts its effects 

remains unknown. Ketamine is functionally different than ‘classical’ antidepressants in 

that it doesn’t directly target one of the major monoaminergic systems eg. dopamine, 

serotonin, or norepinephrine. Acting mainly as an N-methyl-D-aspartate (NMDA) receptor 

antagonist, ketamine’s primary effects are on the glutamatergic and GABAergic systems. 
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A substantial body of work has been dedicated to teasing apart which functional changes 

are responsible for ketamine’s antidepressant effects. Metabolism of (R/S)-ketamine to 

(2R,6R;2S,6S)-hydroxynorketamine appears to be essential for antidepressant effects.10 

Interestingly, the S enantiomer is the more potent inhibitor of the NMDA receptors while 

the R enantiomer metabolite appears significantly responsible for antidepressant effects 

without the psychosis associated with the S enantiomer.11-12 These results, in conjunction 

with the low clinical efficacy found in clinical trials, are curious considering the recent 

Food and Drug Administration (FDA) approval of Johnson & Johnson’s Spravato, which 

is an enantiomerically pure S-ketamine nasal spray.13 

Much of the focus on understanding ketamine’s antidepressant effects has centered 

around glutamate, GABA, and serotonin. Based on the known comorbidity of depression 

and inflammation, in this work, we explored the role that histamine plays in this emerging 

depression treatment. We previously observed that common selective serotonin reuptake 

inhibitors (SSRIs) inhibit the reuptake of histamine from the synaptic cleft (Chapter 4) 

and histamine levels are elevated in behaviorally depressed mice (Chapter 5). Histamine 

remains an understudied molecule in the context of depression, therefore, our goal was to 

expand the understanding of ketamine’s effects on the central nervous system by 

monitoring how hypothalamic histamine responded to a sub-anesthetic dose of ketamine. 

Additionally, we analyzed how the modulation of serotonin via histamine was altered 

following ketamine exposure. We found that systemic administration of ketamine causes 

rapid and sustained inhibition of hypothalamic histamine and attenuates histaminergic 

inhibition of serotonin. As such, ketamine increases the ambient levels of serotonin in a 

manner synonymous to standard SSRIs. Our results highlight critical mechanistic 
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differences between rapid-acting and slow-acting antidepressants on key neurotransmitter 

systems. 

6.2 Methods and Materials 

Chemicals and Reagents 

 Ketamine hydrochloride (Vet One, MWI Animal Health, Boise, ID, USA) and 

escitalopram oxalate (Sigma Aldrich, St. Louis, MO, USA) were individually dissolved in 

sterile saline (0.9% NaCl solution, Hospira, Mountainside Medical Equipment, Marcy, 

NY, USA) and administered via intraperitoneal injection at 10 mg kg-1 and a volume of 5 

mL kg-1 body weight. Urethane (Sigma Aldrich, St. Louis, MO, USA) was dissolved in 

sterile saline at 25% w/v and administered at 7 µL/g mouse body weight for surgical 

anesthesia. 

Electrode Fabrication 

All electrodes are made in house. A single carbon fiber is aspirated into a 

borosilicate capillary (0.6 mm x 0.4 mm x 10 cm; OD x ID x L) (A-M Systems, Sequim 

WA, USA) and sealed under gravity and heat by a vertical pipette puller (Narishige, 

Amityville, NY, USA) to create two separate electrodes. The protruding fiber is then 

trimmed under light microscope to ~150 µm by scalpel. An electrical connection is forged 

with the fiber through a stainless-steel connecting wire and silver epoxy. Finally, a thin 

layer of Nafion (LQ-1105, Ion Power, New Castle, DE, USA) is electrodeposited onto the 

fiber surface at 1 V for 30 s; the coated fiber is dried for 10 min at 70 °C.14-16 

Data Collection and Analysis 

Fast-scan cyclic voltammetry was performed on anesthetized mice using a Dagan 

potentiostat (Dagan Corp., Minneapolis, MN, USA), WCCV 3.06 software (Knowmad 
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Technologies LLC, Tucson, AZ, USA), and a Pine Research headstage (Pine Research 

Instruments, Durham, NC, USA). The histamine waveform (-0.5 V to -0.7 V to +1.1 V to 

-0.5 V at 600 V s-1) was applied at 60 Hz for 10 min, then at 10 Hz for min prior to data 

collection. Data were collected at 10 Hz. Histamine was evoked via biphasic stimulation 

applied through a linear constant current stimulus isolator (NL800A Neurolog, Digitimer 

North America LLC, Fort Lauderdale, FL, USA) with stimulations at 60 Hz, 360 µA, 2 ms 

in width, and 2 s in length.  

Data were collected and filtered on WCCV software (zero phase, Butterworth, 3 

kHz low pass filter). Four control evoked files, 10 min apart, were averaged for the control 

evoked histamine signal after which ketamine was administered and files were collected at 

0 min, 5 min, 10 min, and every 10 min thereafter until 100 min. Currents obtained were 

converted to concentrations through previously generated calibration factors for both 

histamine (2.825 µM nA-1) and serotonin (11 µM nA-1).15-16 

For basal experiments, control evoked files were collected followed by the 

methodology being switched to FSCAV. For FSCAV collection, the serotonin waveform 

was applied at 100 Hz for 2 s followed by a period of controlled adsorption where the 

potential was held at 0.2 V for 10 s and then the serotonin waveform was reapplied at 100 

Hz, as described in Abdalla et al.17 Thirty files (at one file min-1) were collected as control 

files. Following control files, an ip injection of saline was administered and 30 more files 

of FSCAV were collected. Animals were then administered escitalopram (10 mg kg-1) ip 

and 60 files post-drug were collected. The system was then switched back to traditional 

FSCV and four post-basal stimulation files were collected. Electrodes were removed from 

the animal and underwent post-calibration in which 10 files were collected with the 
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electrode in solutions of 10, 25, 50, and 100 nM serotonin. For FSCAV data, the first 

characteristic CV following waveform reapplication was selected for quantification, and 

the peak occurring approximately between 0.4 and 0.85 V was integrated to determine the 

charge (pC). Post-calibrations of each electrode, plotting charge (pC) vs. [serotonin] (nM), 

were used to determine basal concentration. 

Statistical Analyses 

Average control response was generated from four current vs time traces per animal 

and averaged to create an overall group average. Exclusion criteria were based on outliers 

(via Grubbs test) and animals that did not survive the experimental paradigm. Standard 

error of the mean (SEM) was calculated using the average response of each animal (n = # 

animals). Significance between two points was determined by 2-tailed paired t-test and 

taken as p < 0.05. 

Animals and Surgical Procedure 

Animal procedures and protocols were in accordance with the regulations of the 

Institutional Animal Care and Use Committee (IACUC) at the University of South 

Carolina, accredited through the Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC). Male and female C57BL/6J mice (Jackson 

Laboratory, Bar Harbor, ME, USA) 8-14 weeks of age weighing 20 to 29 g were used.  

 Stereotaxic surgery (David Kopf Instruments, Tujunga, CA, USA) followed 

induction of deep and sustained anesthesia from an intraperitoneal injection of urethane 

(below). Mouse body temperature was maintained using a thermal heating pad (Braintree 

Scientific, Braintree, MA, USA). All surgical coordinates were taken in reference to 

bregma.18 A Nafion coated CFM was lowered into the posterior hypothalamus (AP: -2.45, 
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ML: 0.50, DV: -5.45 to -5.55) and a stimulating electrode (insulated stainless-steel, 

diameter: 0.2 mm, untwisted, Plastics One, Roanoke, VA, USA) was placed into the medial 

forebrain bundle (AP: -1.07, ML: +1.10, DV: -5.00). A pseudo-Ag/AgCl reference 

electrode, created by chloridizing a polished silver wire in HCl (15 s in 1 M HCl at 5 V), 

was placed in the contralateral hemisphere.  

6.3 Results 

 Administration of 10 mg kg-1 ketamine ip resulted in a significant decrease in the 

overall amplitude of stimulated hypothalamic histamine (n=5; 2 male, 3 female; Ampmax: 

control: 8.92 ± 1.80 µM; ketamine: 6.09 ± 1.61 µM; p = 0.005) while having no effect on 

the clearance rate (t1/2: control: 4.1 ± 1.1 s; ketamine: 3.3 ± 0.8 s; p = 0.23) after 10 min 

(Figure 6.1B). 

 
Figure 6.1: Ketamine caused rapid inhibition of histamine release and 

alleviates serotonin inhibition. (A) Representative color plot of stimulated 

histamine and serotonin inhibition. Inset: CV showing oxidation peaks of 

histamine and serotonin. (B) Top: evoked histamine control (blue, n=5) and 

10 min following 10 mg kg-1 ketamine (green, n=5) (Ampmax: control: 8.92 ± 

1.80 µM; ketamine: 6.09 ± 1.61 µM; p=0.005 paired t-test). Bottom: 

[serotonin] vs time profiles for control (purple, n=5) and 10 min following 

10 mg kg-1 ketamine (yellow) (Ampmax: control: 44.70 ± 7.91 nM; ketamine: 

20.12 ± 4.88 nM; p=0.013 paired t-test). Error (± standard error of the mean) 

is shown as a shaded region around traces. 
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 Ketamine administration had a rapid and sustained effect on suppressed histamine 

release and alleviated serotonin inhibition throughout the duration (100 min) of data 

collection (Figure 6.2A,B) 

 

Figure 6.2: Ketamine caused prolonged suppression of histamine 

release and serotonin inhibition. (A) Control evoked histamine 

maximum amplitude (blue) and max amplitude for minutes 5, 10, 20, 

to 100 min (green) following 10 mg kg-1 ketamine. (B) Control 

serotonin inhibition minimum amplitude (purple) and inhibition 

amplitude for minutes 5, 10, 20, to 100 min (yellow) following 10 mg 

kg-1 ketamine. Error bars represent ± standard error of the mean. 

 

There was no significant change in the reuptake curves (t1/2) of histamine control 

(blue) or post-ketamine (green). Due to the inhibition profile of serotonin post-ketamine, it 

was challenging to determine the reuptake kinetics associated with it. Qualitatively, it can 

be seen that the overall amplitude of serotonin following ketamine is similar to the post-

inhibition (~25 s mark) amount in control signals. 

We next investigated ketamine’s effect on ambient hippocampal serotonin. Control 

serotonin levels were collected for 30 min prior to vehicle (saline; 30 to 60 min) injection. 

Ketamine (blue; 0.66 nM/min) raised extracellular serotonin rapidly following ip 

administration (60 to 120 min) in a similar fashion to escitalopram (orange; 0.482 ± 0.057 
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nM/min), a classical antidepressant that inhibits the serotonin transporter. Saline vehicle 

did not have an effect on serotonin for either compound (escitalopram, n=10 ; control: 

63.68 ± 3.00 nM; saline: 63.53 ± 3.21 nM; p=0.68) (ketamine, n=2; control: 60.03 nM; 

saline: 59.34 nM). Ketamine increased extracellular serotonin 60 min following injection 

(control: 60.03 nM to 94.49 nM) similar to how escitalopram increased serotonin levels 

(control: 63.68 ± 3.00 nM to 91.27 ± 4.64 nM). 

 

Figure 6.3: Ketamine elevated ambient serotonin similar to escitalopram. 

FSCAV data for mice receiving escitalopram (ip; 10 mg kg-1, orange, n=10) 

or ketamine (ip; 10 mg kg-1, blue, n=2). Ambient serotonin concentration is 

collected for 30 min, followed by 30 min of vehicle (saline), followed by 

administration of ketamine (blue) or escitalopram (orange) for 60 min. 

Ketamine (blue; 0.66 nM/min) raised extracellular serotonin rapidly 

following ip administration (60 to 120 min) in a similar fashion to 

escitalopram (orange; 0.482 ± 0.057 nM/min). Error bars have been omitted 

for clarity. 

 

6.4 Discussion 

We have shown that administration of ketamine (10 mg kg-1; ip) caused rapid and 

sustained inhibition of histamine release in the mouse posterior hypothalamus. Ketamine 
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has not been shown to act directly on the histaminergic system, but most likely regulates 

histamine through glutamatergic and GABAergic routes. GABAergic transmission is 

inhibited by ketamine through NMDA receptor antagonism which leads to excess 

glutamate release. The presence of histamine and GABA in tuberomammillary nucleus 

neurons has been confirmed through immunohistochemistry19 and endogenous GABA has 

been shown to modulate the release of histamine in the hypothalamus.20 Excess glutamate 

release has been shown to influence the release of histamine and activate TMN neurons 

which express both AMPA and NMDA receptors.21 NMDA receptor antagonists increased 

the synthesis and turnover of histamine, which already occurs more frequently than other 

monoamines in the brain.22-23 Infusions of glutamate in the anterior hypothalamus resulted 

in a 150% increase in histamine with respect to baseline measured by microdialysis.24 

Okakura et al. noted that glutamate-evoked histamine release was completely blocked by 

the NMDA receptor specific antagonist AP5, and AP5 alone reduced histamine release to 

around 60% of basal levels.24 These results are in agreement with our data in that ketamine 

caused a robust decrease in histamine release. Fell et al. reported that pretreatment with the 

mGlu2 receptor agonist, LY379268, significantly attenuated histamine release and 

concluded that hypothalamic histamine is modulated by glutamate through mGlu2 

receptors.25-26 Glutamate is a highly potent endogenous agonist of mGlu2 receptors.27-28 

The mGlu2 are located both pre- and post-synaptically and function as auto- and 

heteroreceptors controlling the release of glutamate, GABA and other neurotransmitters.29 

The control of histamine release through glutamate activation of mGlu2/3 is a likely effect 

from ketamine administration. Indeed, immunostaining has confirmed mGlu2 presence in 

the premammillary nucleus30 and mGlu3 presence in TMN.30-31 
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The antidepressant effects of ketamine are thought to stem from synaptic plasticity 

as a result of glutamate activated AMPA (alpha-amino-3-hydroxy-5-methyl-4-

isoxazoepropionic acid) receptors, increased BDNF (brain derived neurotrophic factor), 

activation of mTOR (mammalian target of rapamycin), inhibition of glycogen synthase 

kinase-3 or likely a combination of each.32-34 The importance of mTOR activation is 

disputed as Li et al. reported inhibition of mTOR signaling blocked ketamine’s 

antidepressant effects35 while Abdallah et al. recently reported that rapamycin pretreatment 

(the inhibitor of mTOR) actually prolonged the antidepressant effects of ketamine for 2 

weeks following initial ketamine treatment.36 The antagonism of NMDARs is not required 

for antidepressant effects, but rather an increased level of cyclic adenosine monophosphate 

(cAMP) that results in increased expression of BDNF.37-38 Activation of the AMPA 

receptor is also thought to play an important role in the therapeutic effects of ketamine 

through increased activation of mTOR, part of a signaling pathway that results in increased 

BDNF that then increases synaptic plasticity.39 Antagonism of AMPA receptors 

significantly blocked the beneficial effects of ketamine in rodents undergoing learned 

helplessness, tail suspension, and forced swim tests (tests of depressive-like phenotypes).40-

41 The perisynaptically located metabotropic glutamate receptors 2&3 (mGlu2/mGlu3) 

have also been highlighted for their role in the therapeutic effects of ketamine.42-43 2R,6R-

hydroxynorketamine functions as an antagonist of mGlu2/3 receptor.44 A combination of 

ketamine and an mGlu2/3 receptor antagonist was shown to activate serotonin neurons in 

the dorsal raphe nucleus.45 

In addition to its anesthetic and antidepressant properties, ketamine bears analgesic 

and anti-inflammatory effects. Ketamine’s ability to modulate the body’s immune response 
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arose from observations of improved outcomes in critically ill patients46 and experimental 

septic shock.47 Ketamine has been shown to mitigate the inflammatory challenge of 

lipopolysaccharide and decrease the production of pro-inflammatory cytokines during 

immune response.48-51 The immunomodulatory role of ketamine was reviewed thoroughly 

by De Kock and colleagues.52 In Chapter 5 we covered the influence of chronic mild stress 

and neuroinflammation on brain histamine. In a similar chronic stress behavior model, 

ketamine (10 mg kg-1) induced a rapid antidepressant effect and decreased expression of 

hippocampal proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor 

alpha (TNFα).53 Interestingly, ketamine’s inflammatory response may be dose dependent 

as higher doses (50 mg kg-1 and above) have been shown to increase expression of 

inflammatory proteins.54-55 Antidepressant benefits of ketamine involve sub-anesthetic 

doses, therefore, the increased inflammatory signaling observed with high doses of 

ketamine will generally not be expected.56 Overall, ketamine’s anti-inflammatory effects 

function as a pretreatment to immune challenge rather than a response49 and ketamine has 

no effect on cytokine production without an immune stimulus.52 

We have shown that ketamine caused a robust and persistent decrease in evoked 

histamine. Ketamine has been shown to elevated glutamate transmission while also 

functioning as an anti-inflammatory agent. Previous reports are in agreement with our data 

and concluded that ketamine, through glutamate activation inhibiting histamine release 

through mGlu2/3 receptors and immunomodulatory abilities, could result in the decrease 

of stimulated histamine. Most interestingly, the overall effect is on serotonin, in a manner 

synonymous to SSRIs. 
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6.5 Conclusion 

In this report we investigated the effect of acute ketamine administration on 

histamine and serotonin in vivo. In the posterior hypothalamus, we found that ketamine 

caused a rapid and sustained decrease in histamine amplitude and lessened histamine’s 

inhibition of serotonin 100 min following administration. Additionally, we confirmed the 

increase in ambient serotonin by showing ketamine increased basal hippocampal serotonin 

in a similar fashion to the SSRI escitalopram, despite its completely different mode of 

action. The therapeutic effects of rapid acting antidepressants like ketamine are still being 

uncovered. Our data provide new insights into the effects of rapid acting antidepressants 

and how compounds targeting the glutamatergic system influence monoamine 

neurotransmission. 
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CHAPTER 7 

CONCLUSIONS & PROSPECTS

 The relationship of chemicals in the brain is delicate and dynamic. Histamine and 

serotonin are two important bioamines that regulate many different processes within the 

brain and body. Their actions and modulation are still being studied to fully understand the 

impact histamine and serotonin have on brain disorders. However, analyzing the 

underlying neurochemical changes of these two molecules has been challenging due to the 

lack of robust analytical tools. This work continued previous Hashemi lab investigations 

to uncover the intricate relationship histamine and serotonin have in the brain. 

 In this dissertation, I first reviewed the currently available tools for neurochemical 

analysis and their respective advantages and drawbacks in Chapter 2. I then used FSCV to 

investigate how CNS histamine responded to pharmacological challenge in male and 

female mice in Chapter 3. I found that the histamine system is highly conserved between 

male and female mice, owing to the brain’s homeostatic regulation. However, I determined 

that female mice appear to have a higher level of immune regulation mediated by H3 

receptors. Next, I used a genetically modified mouse model to investigate the transport 

mechanisms of histamine clearance in the brain and rule out SERT’s contribution to 

histamine uptake in Chapter 4. With a better understanding of the male and female and 

transport systems, I applied histamine FSCV to a model of chronic stress and chronic 

inflammation (chronic mild stress behavioral paradigm) in Chapter 5. I showed that brain 

histamine is elevated in this model of chronic stress/inflammation which is important in 
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the context of histamine’s ability to inhibit serotonin release through H3 receptors. Finally, 

I studied the effects of the newly approved antidepressant, ketamine in Chapter 6. 

Ketamine’s antidepressant effects are rapid, relatively short lived requiring repeated 

injections, and broadly not well understood. Unlike common antidepressants that target 

traditional monoamines, ketamine targets the glutamatergic system and is thought to 

modulate monoamines through glutamate and GABA. Knowing how histamine is changed 

during depression and inflammation, and that in addition to its antidepressant effects, 

ketamine has been shown to be anti-inflammatory, understanding how ketamine affected 

histaminergic transmission provided novel information on its neurochemical mechanism. 

 This dissertation pushed our understanding of the co-modulation of histamine and 

serotonin and how these two neurotransmitters respond to pharmaceutical targeting. Future 

studies will have to further investigate the ability of female mice to regulate histamine 

levels in the brain and the influence of cycling hormones on that regulation. Studies using 

post-menopausal mice, ovariectomized mice, or mice given estrogen blocking compounds 

should yield a clearer understanding of female H3 receptor control.  

 I applied histamine FSCV to a model of behaviorally induced chronic stress. In the 

future, we plan to expand the application of histamine FSCV to other models of chronic 

inflammation, neuroinflammation, and neurodegeneration. One such model is the 

chemically induced Parkinson’s disease model MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine) mouse. Additionally, due to the increased prevalence and risk posed 

by environmental toxins in today’s world, we are in a unique position to study how 

environmental exposures (eg. heavy metals, pesticides, polyaromatic hydrocarbons) affect 

fundamental neurochemistry. 
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 Chapter 3 investigated a substantial amount of pharmacology of the histamine 

system. We plan to collaborate with mathematicians to create a mathematical model 

representing the physiological function of a histamine synapse. The model will encompass 

both male and female aspects as well as the modulation of histamine and serotonin to create 

a more complete picture than two separate systems. Ultimately, the product would be 

applied to data obtained from neurodegenerative or inflammation animal models to 

highlight key criteria (eg. release, reuptake, vesicular packaging) causing deficits. 

 Overall, this dissertation showcased the power of simultaneous, real-time 

neurochemical measurements via FSCV. The continued advancement of our understanding 

of the intricate relationships neurotransmitter systems have with one another will aid in the 

development of novel strategies and therapies to manage the enormous burden psychiatric 

disorders have on our populations.
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APPENDIX B 

SUPPLEMENTAL FIGURES FOR CHAPTER 3 

 

Figure B1: Representative images for estrous cycle determination. (A) 

proestrus (B) estrus (C) metestrus (D) diestrus. 
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Figure B2: Electrode placement in the posterior hypothalamus. Layered 

brain slices and brain atlas images show the placement of CFM in 

hypothalamus for single (green) and double (blue) histamine release 

events.
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APPENDIX C 

SUPPLEMENTAL MATERIAL FOR CHAPTER 5 

 

Figure C1 CMS-treated mice have larger 

stimulated histamine area under the curve. Violin 

plot comparing the area under the curve of 

stimulated histamine between non-stress control 

mice and CMS-treated mice. (AUC control: 14.51 

± 2.35 µM•s; CMS: 25.50 ± 2.80 µM•s; Wilcoxon 

rank-sum test, p=0.02) 
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